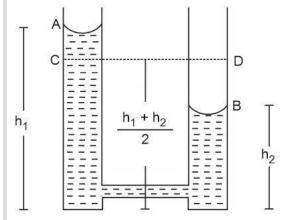
PREVIEW QUESTION BANK


Module Name : GAT- B 2024-ENG Exam Date : 20-Apr-2024 Batch : 09:00-12:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negati Mark
ojec	tive Question			
	11001	Assume that a narrow tunnel is dug between two diametrically opposite points on the earth's surface. If a particle is released in this tunnel, it will execute a simple harmonic motion. What will be the time period of SHM of this particle? $(1) \frac{1}{2\pi} \sqrt{\frac{R^3}{GM}}$ $(2) \frac{1}{2\pi} \sqrt{\frac{R^3}{GM}}$ $(3) 2\pi \sqrt{\frac{R^3}{GM}}$ $(4) 2\pi R \sqrt{\frac{1}{GM}}$	1.0	0.50
		A2:2 A3:3 A4:4		
jec	tive Question			
	11002	If a body is performing uniform circular motion with velocity v and radius R, then identify the true statements from the following: A. Its velocity v is constant. B. Acceleration is always directed towards the centre and its magnitude is a = v²/R. C. Angular momentum is constant in magnitude but its direction keeps changing. D. Angular velocity of the body ω = v/R. Choose the most appropriate answer from the options given below. (1) A and C only (2) B and D only (3) A, B and D only (4) A and D only A1:1 A2:2 A3:3	1.0	0.50
iec	tive Question			
jee	11003		1.0	0.50

		A proton and a deuteron moving with equal kinetic energy enter perpendicularly into a magnetic field. What will be the ratio of radii of the circular path of the proton to that of the deuteron? (1) 1 (2) 2 (3) $\frac{1}{2}$ (4) $\frac{1}{\sqrt{2}}$ A1:1 A2:2		
		A4:4		
Object	ive Question			
4	11004	A big oil droplet of radius 10 cm is broken into a thousand equal droplets. What will be the gain in surface energy? (Surface tension of the oil is 0.1 Nm ⁻¹)	1.0	0.50
		(1) 5 J		
		(2) 10 J		
		(3) 0.11 J		
		(4) 0.25 J		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
5	11005	Two parallel rail tracks run east-west. Train P moves in east direction with a speed of 36 kmh ⁻¹ and train Q moves with a speed of 72 kmh ⁻¹ in west direction. What is the velocity of Q with respect to P?	1.0	0.50
		(1) 30 m/s from east to west		
		(2) 30 m/s from west to east		
		(3) 36 m/s from west to east		
		(4) 10 m/s from east to west		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

	ive Question			0.50
6	11006	Identify the statement which in NOT true for a 'conservative force'	1.0	0.50
		(1) The work done by the conservative force depends only on the end points.		
		(2) The work done by a conservative force in a closed path is zero.		
		(3) Spring force and frictional force are conservative.		
		(4) The total mechanical energy of a system is conserved if forces doing work on it are		
		conservative.		
		A1:1		
		A2:2		
		A3:3		
		A4 : 4		
Object	ive Question			
7	11007	A boy sitting on a surface inside a satellite moving around the earth feels weightless because	1.0	0.50
		(1) the earth does not attract the object in a satellite		
		(2) the reaction on the person balances the gravitational force		
		(3) a person sitting in the satellite is not accelerated		
		(4) the normal force (reaction) is zero		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
8	11008		1.0	0.50
			1	

Two cylindrical vessels of equal cross-sectional area A contain water up to height h_1 and h_2 . The vessels are interconnected so that the levels in them become equal. What is the work done during this process if ρ is the density of water?

- (1) $\rho.A.(h_1 h_2)$
- (2) $\rho.A.(h_1-h_2)/2$
- (3) ρ .A. $(h_1 h_2)^2$.g
- $^{(4)}$ p.A.[$(h_1-h_2)/2$]².g
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

9	11009	A bullet of mass 20 g, moving at 50 m/s penetrates 20 cm into a wooden block. What is the magnitude of the force exerted on the wooden block?	1.0	0.50
		(1) 625 N		
		(2) 225 N		
		(3) 125 N		
		(4) 725 N		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Objective Question

10	11010	1.0	0.50	

		Identify which of the following statements regarding significant figures are correct A. 6.405 has four significant figures B. 12300 has five significant figures C. 0.00421 has five significant figures D. 4.500 has four significant figures Choose the most appropriate answer from the options given below. (1) A, B and C only (2) A and D only (3) C and D only (4) B and D only A1:1 A2:2 A3:3 A4:4		
Object	ive Question			
11	11011	The cross product of vector \vec{A} and vector \vec{B} has a magnitude of 50 unit, where vector \vec{A} has a magnitude of 10. The angle between vector \vec{A} and \vec{B} is 60 degrees. What is the magnitude of vector \vec{B} ? (1) $\frac{5}{\sqrt{2}}$ (2) $\frac{10}{\sqrt{2}}$ (3) $\frac{10}{\sqrt{3}}$ (4) $\frac{5}{\sqrt{3}}$ A1:1 A2:2	1.0	0.50
	ive Question			
12	11012	A resistor R dissipates power P when connected to a generator. If another resistor Q is put in series with R, the power dissipated by R will (1) Increase (2) Decrease (3) Remain the same (4) Increase or decrease depending on the values of R and Q	1.0	0.50

		A2:2 A3:3		
		A4:4		
Objecti	ive Question			
13	11013	The electric charge on a body is always an integral multiple of 'e' where 'e' is the charge that an electron or proton carries. This concept is known as (1) Additivity of charges (2) Quantization of charges (3) Conservation of charges (4) Principle of superposition A1:1	1.0	0.50
		A3:3 A4:4		
Object	ive Question			
14	11014	Match items in List I with items in List II List I (Type of thermodynamic process) List II (Work done) A. Isotermal B. Adiabatic II. μR (T ₂ -T ₁) C. Isochoric III. μRT In V ₂ /V ₁ D. Isobaric IV. μR (T ₁ -T ₂) / (γ-1) Choose the correct answer from the options given below: (1) A-III, B-IV, C-I, D-II (2) A-IV, B-III, C-I, D-II (3) A-III, B-IV, C-II, D-I (4) A-III, B-I, C-IV, D-II A1:1 A2:2 A3:3 A4:4	1.0	0.50
	ive Question		1	
15	11015		1.0	0.50

		Two parrallel plate capacitors each of 15 µF capacity are connected in series. The space between the plates of one capacitor is filled with a dielectric material of dielectric constant K = 2. The equivalent capacitance of the system will be (1) 45 µF (2) 30 µF (3) 10 µF (4) 15 µF A1:1 A2:2 A3:3 A4:4		
Objecti 16	ve Question		1.0	0.50
10	11016	Many enzymes catalyze both forward and reverse reactions. Which one of the following statement is NOT correct?	1.0	0.30
		(1) An equilibrium is established after some time.		
		(2) It is possible to control the directions of the reaction by suitably removing the formed		
		product.		
		(3) These reactions are both temperature and concentration dependent.(4) The forward and reverse reactions proceed via different activation complexes.		
		(4) The followard and reverse reactions proceed via different activation complexes.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ve Question		1.0	0.50
11/	11017	Sanger reaction (Sequencing) is an example of	1.0	0.50
		(1) electrophilic substitution		
		(2) hydrolysis		
		(3) esterification (4) nucleophilic substitution		
		(4) Hucieophilic substitution		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ve Question			

1	18	11018	Which one of the following is an aromatic compound ?	1.0	0.50
			A B C D		
			(1) A		
			(2) B		
			(3) C		
			(4) D		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Objecti	ve Question			
		11019	Given below are two statements	1.0	0.50
			Statement I: Precision refers to the closeness of various measurements for		
			the same quantity.		
			Statement II: Accuracy is the agreement of the obtained value with the known		
			or true value of the quantity.		
			In light of the above statements, choose the correct answer from the options given below:		
			(1) Both Statement I and Statement II are correct		
			(2) Both Statement I and Statement II are NOT correct		
			(3) Statement I is correct, but Statement II is not correct		
			(4) Statement I is not correct, but Statement II is correct		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		ve Question			
2	20	11020	Which one of the following transition metals is present in Vitamin B12?	1.0	0.50
			(1) Mn		
			(2) Co		
			(3) Zn		
			(4) Cu		
			A1:1		
			A2:2		

		A3:3		
		A4:4		
		A1.1		
Object	ive Question			
21	11021	Which one of the following drugs contains β-lactam structure ?	1.0	0.50
		(1) Penicillin		
		(2) Sulphanilamide		
		(3) Erythromycin		
		(4) Chloramphenicol		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question		1.0	0.50
22	11022	Which law of thermodynamics states that "energy of an isolated system is constant"?	1.0	0.50
		(1) First		
		(2) Second		
		(3) Third		
		(4) Zeroth		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01: 4	ive Question			
23	11023	According to the molecular orbital theory, which of the following molecules should exhibit	1.0	0.50
		paramagnetism?		
		(1) O ₂		
		(2) N ₂		
		(3) F ₂		
		(4) C ₂		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

	ive Question			
24	11024	It is possible to separate o-nitrophenol and p-nitrophenol using steam distillation because o-nitrophenol has (1) Van der Waals force (2) Steric hindrance (3) Intermolecular H-bonding (4) Intramolecular H-bonding A1:1 A2:2 A3:3 A4:4	1.0	0.50
Object	ive Question			
25	11025	Natural rubber is a polymer of while synthetic rubber neoprene is formed by polymerization of (1) 1,3-butadiene; acrylonitrile (2) 2-chloro-1,3-butadiene;1,3-butadiene (3) 2-methyl-1,3-butadiene;2-chloro-1,3-butadiene (4) Acrylonitrile;2-methyl-1,3-butadiene A1:1 A2:2 A3:3 A4:4	1.0	0.50
Object	ive Question			
26	11026	Arrange the following in decreasing order of their acidic strength A. CH ₃ COOH B. CICH ₂ COOH C. CI ₂ CHCOOH D. CI ₃ CHCOOH E. F ₃ CCOOH Choose the correct answer from the options given below: (1) A > B > C > D > E (2) E > D > C > B > A (3) A > E > D > C > B (4) B > C > D > A > E	1.0	0.50

		A2:2					
		A3:3					
		A4 : 4					
		A4 . 4					
Object	ive Question						
27	11027	Whic	ch one of the following	g ma	difications is NOT a natural N-terminal modification of proteins?	1.0	0.50
			Acetylation				
			Benzylation				
			/lyristoylation				
			Sumoylation				
		() (Jamoyiaaon				
		A1:1					
		A2:2					
		42.2					
		A3:3					
		A4:4					
Object	ive Question						
28	11028	Matc	h the items in List I w	/ith i	tems in List II	1.0	0.50
			List I		List II		
		A.	Enzymes	I.	Amino acid		
		В.	Glucose	II.	Biocatalysts		
		C.	Lactose	III.	Aldohexose		
		D.	Methionine	IV.	Disaccharide		
		Cho	ose the correct answe	er fro	om the options given below :		
		(1)	A-I, B-II, C-III, D-IV				
			A-II, B-III, C-IV, D-I				
			A-II, B-IV, C-III, D-I				
		(4) /	A-I, B-III, C-IV, D-II				
		A1:1					
		A2:2					
		12.2					
		A3:3					
		A4:4					
	ive Question						
29	11029					1.0	0.50

		A nucleic acid chain comprises of A. Phosphate group B. Nitrogen base C. Pentose sugar D. Thiol group E. β (1 – 4) linkage Choose the correct answer from the options given below: (1) B and C only (2) B, D and E only (3) A, D and E only (4) A, B and C only A1:1 A2:2 A3:3 A4:4		
	ive Question			
30	11030	Which of the following elements readily react with oxygen to form their oxides ?	1.0	0.50
		(1) Au and Pt		
		(2) Ne and Ar		
		(3) Al and Cu		
		(4) Cu and Pt		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
31	11031	Which one of the following is caused by point mutation?	1.0	0.50
		(1) Turner's syndrome		
		(2) Down's syndrome		
		(3) Sickle cell anemia		
		(4) Kleinefelter's syndrome		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Ohioat	iva Ovastian			
Object 32	ive Question	Which is NOT the firmation of placents 2	1.0	0.50
		Which is NOT the function of placenta?		
		(1) Supply of oxygen and nutrients to the embryo		
		(2) Removal of excretory waste products produced by embryo		
		(3) Production of hCG and HPL		
		(4) Supply all types of antibodies to the embryo		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
33	11033	Which statement is true with respect to colostrum?	1.0	0.50
		(1) It is a yellowish fluid secreted by the mother during later days of lactation.		
		(2) Colostrum provides passive immunity to the infant.		
		(3) Colostrum is rich in carbohydrates and has no antibodies.		
		(4) Colostrum provides active immunity to the infant.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
34	11034	Bacillus thurinigiensis CryA controls certain caterpillar pests by	1.0	0.50
		(1) turning toxic in the acidic pH of their gut medium		
		(2) turning toxic in the alkaline medium of their gut		
		(3) repelling them from the crops		
		(4) inducing satiation in them		
		(4) Inducing Satiation in them		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
35	11035		1.0	0.50

		Which of the following options correctly match the name of gene and its function in cloning vector pBR322?		
		(1) Cla I - Acts as selectable marker to identify non-transformants		
		(2) amp ^r - Codes for plasmid amplifying enzymes		
		(3) rop - Codes proteins required for plasmid replication		
		(4) ori - Controls plasmid size		
		(4) on - Controls plasmid size		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
36	11036	Which one of the following statements about AIDS caused by HIV is correct?	1.0	0.50
		(1) The time lag between the HIV infection and AIDS manifestation varies from 2-3 weeks.		
		(2) After entering the body, HIV enter B-lymphocytes.		
		(3) The AIDS-affected individuals are more susceptible to Tuberculosis.		
		(4) HIV infection depletes only the CD8 lymphocytes in the body.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
_	11037	The two heavy chains of a human antibody are linked to each other by	1.0	0.50
		(1) hydrogen bond		
		(2) glycosidic bond		
		(3) phosphodiester bond		
		(4) disulfide bond		
		(4) distille botte		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
38	11038		1.0	0.50

		Aldosterone regulates the water and electrolyte balance in human body by		
		(1) Stimulating the H₂O and Na ⁺ reabsorption, while K ⁺ and PO₄ ³⁻ excretion		
		(2) Stimulating the Na ⁺ and K ⁺ reabsorption, while H ₂ O and PO ₄ ³⁻ excretion		
		(3) Stimulating the H ₂ O reabsorption and Na ⁺ excretion		
		(4) Stimulating the Na ⁺ and PO ₄ ³⁻ reabsorption, while K ⁺ excretion		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question		1.0	0.50
39	11039	At G2/M checkpoint the cell cycle will arrest if	1.0	0.50
		(1) The cell has not achieved an adequate size		
		(2) The spindle fibre formation has not occurred		
		(3) The DNA replication or repair of DNA damage has not been completed		
		(4) The attachment of the spindle fibres to the kinetochore of centromeres is not adequate		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
40	11040	Choose the option that correctly matches for an immunosuppressant and its origin	1.0	0.50
		(1) Cholesterol - Palm Oil		
		(2) Cyclosporin A - Trichoderma polysporum		
		(3) Streptokinase - Streptococcus		
		(4) Botulinum toxin - Clostridium botulinum		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 41	ive Question		1.0	0.50
71	11071		1.0	0.50

		Which statement is true with respect to meiosis?		
		(1) Meiosis involves two sequential cycles of nuclear and cell division but only a single cycle of DNA replication.		
		(2) Meiosis involves one cycle of nuclear and cell division but two cycles of DNA replication.		
		(3) Four diploid cells are formed at the end of meiosis.		
		(4) Two haploid cells are formed at the end of meiosis.		
		No. 14 Production of Control State 1. Program again, Control and State 2 Production and Sta		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
42	11042	The principle driving force behind movement of water in plants is known as	1.0	0.50
		(1) Ionic potential		
		(2) Membrane potential		
		(3) Soil temperature		
		(4) Water potential		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obies	Oti			
43	ive Question 11043	Which one of the following categories of methods CANNOT be used for animal virus detection	1.0	0.50
		?		
		(1) Serology		
		(2) Nucleic acid hybridization		
		(3) Hematology		
		(4) Hemagglutination		
		A1:1		
		AL. I		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
44	11044		1.0	0.50

		Respiratory pathway is considered as a pathway		
		(1) Catabolic		
		(2) Anabolic		
		(3) Amphibolic		
		(4) Fermentative		
		(4) I difficulties		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
45	11045	Match the items of List I with the items in List II	1.0	0.50
		List I List II		
		A. Diabetes insipidus I. Dysregulation of glucagon		
		B. Exophthalmic goiter II. Water loss and dehydration		
		C. Acromegaly III. Grave's disease		
		D. Hyperglycemia IV. Disfigurement of face		
		Choose the correct answer form the options given below :		
		(1) A-I, B-III, C-IV, D-II		
		(2) A-IV, B-III, C-II, D-I		
		(3) A-II, B-I, C-III, D-IV		
		(4) A-II, B-III, C-IV, D-I		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11046	An equilateral triangle of side 6 cm has its corners cut-off to form a regular hexagon. The area	1.0	0.50
		of regular hexagon is		
		(1) $2\sqrt{3}$ cm ²		
		(2) $3\sqrt{2}$ cm ²		
		(3) $6\sqrt{3}$ cm ²		
		(4) $3\sqrt{6} \text{ cm}^2$		
		A1:1		
		····		
		A2:2		

		A3:3		
		A4:4		
	tive Question			
47	11047	length and speed of the train, respectively, is	1.0	0.50
		(1) 126 m, 21 m/s		
		(2) 120 m, 20 m/s		
		(3) 110 m, 20 m/s (4) 63 m, 21 m/s		
		(4) 63 111, 21 111/5		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	tive Question			
48	11048	In an election contested by two candidates, one candidate got 30% of total votes and lost by 500 votes. The total number of votes polled is	1.0	0.50
		(1) 1350		
		(2) 1450		
		(3) 1150		
		(4) 1250		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
49	11049	$9.6 \times 3.6 \div 7.2 + 10.8$ of $1/18 - 1/10 = ?$	1.0	0.50
		(1) 15·56		
		(2) 10·56		
		(3) 5·3		
		(4) 15·36		
		A1:1		
		A2:2		
		A3:3		

	A4:4		
ive Ouestion			
11050	The traffic lights at three different road crossings change after every 48 s, 72 s and 108 s, respectively. If they all change simultaneously at 8:20:00 h, when will they change again simultaneously? (1) 8:27:12 h (2) 8:25:10 h (3) 8:26:12 h (4) 8:24:10 h A1:1 A2:2 A3:3 A4:4	1.0	0.50
ive Question			
11051	The sum of four consecutive even numbers is 107 more than the sum of three consecutive odd numbers. If the sum of smallest odd number and the smallest even number is 55, then what is the smallest even number? (1) 36 (2) 40 (3) 32 (4) 38 A1:1 A2:2 A3:3 A4:4	1.0	0.50
		1.0	0.50
	Maximum distance between any two points inside or on cube of side 1 cm is equal to (1) 1 cm (2) $\sqrt{2}$ cm (3) $\sqrt{3}$ cm (4) 6 cm A1:1		
	ive Question	The traffic lights at three different road crossings change after every 48 s, 72 s and 108 s, respectively. If they all change simultaneously at 8:20:00 h, when will they change again simultaneously? (1) 8:27:12 h (2) 8:25:10 h (3) 8:26:12 h (4) 8:24:10 h A1:1 A2:2 A3:3 A4:4 The sum of four consecutive even numbers is 107 more than the sum of three consecutive odd numbers. If the sum of smallest odd number and the smallest even number is 55, then what is the smallest even number? (1) 36 (2) 40 (3) 32 (4) 38 A1:1 A2:2 A3:3 A4:4 Pre Question Maximum distance between any two points inside or on cube of side 1 cm is equal to (1) 1 cm (2) √2 cm (3) √3 cm (4) 6 cm A1:1	The traffic lights at three different road crossings change after every 48 s, 72 s and 108 s, respectively. If they all change simultaneously at 8:20:00 h, when will they change again simultaneously? (1) 8:27:12 h (2) 8:25:10 h (3) 8:28:12 h (4) 8:24:10 h A1:1 A2:2 A3:3 A4:4 The sum of four consecutive even numbers is 107 more than the sum of three consecutive odd numbers. If the sum of smallest odd number and the smallest even number is 55, then what is the smallest even number? (1) 36 (2) 40 (3) 32 (4) 38 A1:1 A2:2 A3:3 A4:4 Maximum distance between any two points inside or on cube of side 1 cm is equal to (1) 1 cm (2) √2 cm (3) √3 cm (4) 6 cm A1:1

		A4:4		
Object	ive Question			
53	11053	Number of natural numbers that can be formed using digits 1, 2, 3, 4, 5, 6, 7 each exactly once so that digits 3, 4 and 5 are always in the middle is equal to (1) 24	1.0	0.50
		(2) 144		
		(3) 5040		
		(4) 720		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question		1.0	0.50
54	11054	The acute angle between hour and minute hands of a wall clock when the time shown by it is 02:15 is equal to	1.0	0.50
		(1) 30°		
		(2) 26·25°		
		(3) 22·5°		
		(4) 37·5°		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
55	11055	Number of squares in a chess-board is equal to	1.0	0.50
		(1) 64		
		(2) 81		
		(3) 204		
		30 St		
		(4) 284		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Objecti	ive Question			
56	11056	$x^2 + ax + 1 = 0$ has no real root. Which one of the following is correct? $(1) a \le 2$ $(2) a \ge 2$ $(3) - 2 \le a < 2$ (4) - 2 < a < 2 A1:1 A2:2	1.0	0.50
		A4:4		
Ob.:4	04:			
57	ive Question 11057	There are 30 boys and 60 girls in a class. If the average age of boys is 12 years and average age of girls is 10 years, what is the average age of the whole class? (1) 10·11 years (2) 10·66 years (3) 11·66 years (4) 11·11 years A1:1 A2:2 A3:3 A4:4	1.0	0.50
Objecti	ive Question			
58	11058	The diagonals of a rhombus are 16 cm and 12 cm. The side of the rhombus would be (1) 10 cm (2) 11 cm (3) 8 cm (4) 9 cm A1:1 A2:2 A3:3 A4:4	1.0	0.50
	ive Question			llo es
59	11059		1.0	0.50

		For x > 0, if variable takes discrete values $x + 4$, $x - 3.5$, $x - 2.5$, $x - 3$, $x - 2$, $x + 0.5$, $x - 0.5$, $x - 2.5$		
		+ 5, then the value of median is		
		(1) x – 1·25		
		$(2) \times -0.5$		
		$(3) \times + 0.5$		
		$(4) \times + 1.25$		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		
Object 60	ive Question		1.0	0.50
	11000	The salary of a worker is first increased by 5% and then it is decreased by 5%. What is the	1.0	0.50
		change in his salary ?		
		(1) Decrease in salary 0·25%		
		(2) Increase in salary 0·50%		
		(3) No change in salary		
		(4) Decrease in salary 0·50%		
		A1:1		
		Al. I		
		A2:2		
		A3:3		
		A4 : 4		
Object	ive Question			
61	11061	Which one of the following antibody types protects against inhaled and ingested pathogens ?	3.0	1.00
		(1) IgG		
		(2) IgD		
		(3) IgM		
		(4) IgA		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
62	11062		3.0	1.00

		Which one of the following hormones transmit their signal via nuclear receptors?		
		(1) Thyroid hormone		
		(2) Follicle Stimulating hormone		
		(3) Insulin		
		(4) Luteinizing hormone		
		(4) Luterilizing normone		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
63	11063	Which one of the following amino acids is coded by a single codon?	3.0	1.00
		(1) Valine		
		(2) Threonine		
		(3) Tryptophan		
		(4) Isoleucine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
64	11064	Which one of the following statements is NOT correct ?	3.0	1.00
		(1) Glucose is stored in animals as glycogen.		
		(2) Glucose is stored in plants as starch.		
		(3) Cellulose is a polymer of only glucose.		
		(4) Hemicellulose is a polymer of only glucose.		
		(4) Treffice idiose is a polyffier of offiny glucose.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
65	11065		3.0	1.00

	Match the items in List I with t	ne iter			
	List I (Organelle)	1.	List II (Function)		
	A. Mitochondria	I.	Protein processing and transport		
	B. Nucleolus	II.	Protein synthesis		
	C. Golgi complex	III.	Energy production		
	D. Endoplasmic reticulum	IV.	Ribosomal RNA synthesis		
	(1) A-I, B-III, C-II, D-IV				
	(2) A-II, B-III, C-I, D-IV				
	(3) A-III, B-II, C-I, D-IV				
	(4) A-III, B-IV, C-I, D-II				
	A1:1				
	A2:2				
	A3:3				
	A4 : 4				
tive Question					
11066	In which one of the following	comp	artments of the cell, carbohydrates are added to a protein	3.0	1.00
	during glycoprotein synthesis	?			
	(1) Mitochondria				
	(2) Lysosome				
	(3) Nucleus				
	(4) Golgi complex				
	A1:1				
	A2:2				
	A3:3				
	A4:4				
tive Question					
11067			protein coding open reading frame is replaced with another owing is NOT a likely possibility?	3.0	1.00
	(1) It may not make any differ	ence t	to the protein sequence.		
	(2) It may cause a single ami		Manager translation (American Stroke Objects that Manager Andrews)		
	(3) It may create a premature				
	(4) The mRNA will not be rec				
	A1:1				
	A1:1 A2:2				

		A3:3		
		A4:4		
Object 68	ive Question		3.0	1.00
00	11000	The indigenous vaccine, Covaxin against SARS Coronavirus-2 contains	3.0	1.00
		(1) the mRNA expressing viral spike protein		
		(2) inactivated whole virions		
		(3) the purified viral envelope protein		
		(4) the DNA coding for viral spike protein		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 69	ive Question 11069		3.0	1.00
69	11009	Antibody diversity is an example of	3.0	1.00
		(1) Gene rearrangement		
		(2) Domain swapping		
		(3) Post-translational modification		
		(4) Proteolytic processing		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 70	ive Question		3.0	1.00
		Which of the following immunoglobulins primarily pass through the placenta to provide passive immunity to the fetus?		
		(1) IgM only (2) IgM and IgG		
		(3) IgA and IgG		
		(4) IgG only		
		(4) igo only		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		

	ive Question						
71	11071	Whic	h of the following pa	air of	monosaccharides contains epimers of each other?	3.0	1.00
		(1) D	-Mannose and D-G	luco	se		
		(2) D	-Gulose and D-Glu	cose			
		(3) D	-Arabinose and L-A	rabi	nose		
		48 58	-Glucose and D-Fr				
		(. / -					
		A1:1					
		A2:2					
		A3:3					
		44.4					
		A4:4					
Object	ive Question						
72	11072	Matc	h the items in List I	with	items in List II	3.0	1.00
			List I		List II		
		Α.	Prophase	T	Reformation of the nuclear envelope		
		Section 1	ropridate	0.55	around daughter chromosomes		
		В.	Metaphase	11.	Separation of the two daughter		
					chromosomes		
		C.	Anaphase	III.	Condensation of DNA into chromatids		
		D.	Telophase	IV.	Chromatids line up along an axis		
			A-III, B-II, C-IV, D-I				
			A-III, B-IV, C-II, D-I				
		(3) A	A-IV, B-III, C-II, D-I				
		(4) A	A-II, B-IV, C-I, D-III				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object 73	ive Question					3.0	1.00
73	11073	The	specificity in an anti	body	molecule is provided by the	3.0	1.00
		(1) L	ight chain variable ı	egio	n		
		(2) L	ight chain constant	regio	on		
		(3) H	eavy chain constar	nt reg	ion-l		
		(4) H	inge region				
		A1:1					
		A2:2					

		A3:3		
		A4:4		
Object	ive Question			
74	11074	Calcium alginate based synthetic seeds tend to lose water rapidly and become hard pellet. This problem can be overcome by	3.0	1.00
		(1) Coating the capsule with polyethylene glycol		
		(2) Preserving the seeds in the airtight packaging till sowing		
		(3) Treating the somatic embryos with sterile water for 3 hours before encapsulation		
		(4) Coating the capsules with Elvax 4260		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			14.00
75	11075	Which one of the following statements most appropriately describes the concept of 'Codon Bias'?	3.0	1.00
		(1) Some codons for a particular amino acid are used more frequently.		
		(2) There has been an element of human bias for assigning specific codons to an amino acid.		
		(3) There is no codon bias in plants.		
		(4) The usage of codons varies for different proteins in an organism.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
76	11076	Which one the following is NOT true for Quantum dots as fluorescent probes in fluorescence microscopy?	3.0	1.00
		100		
		(1) They are highly resistant to photobleaching.		
		(2) They can generate fluorescence of different emission wavelengths.		
		(3) They are nanocrystals of different sizes.		
		(4) Their flurorescence properties do not depend on the size of the Quantum dots.		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Object	ive Question			
77	11077	Francis & Crick proposed the scheme called Central Dogma in 1958. Which of the following processes was NOT covered in this scheme?	3.0	1.00
		(1) Replication		
		(2) Transcription		
		(3) Reverse transcription		
		(4) Translation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			1
78	11078	Beggiatoa, a bacterium depends on organic carbon, inorganic chemicals and inorganic electron donor for its nutrition. On the basis of its nutritional type, it is classified as	3.0	1.00
		(1) Photoorganoheterograph		
		(2) Chemolithoautotroph		
		(3) Chemolithoheterotroph		
		(4) Chemoorganoheterotroph		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
79	11079	Which one the following statements is correct about various microbial culture media ?	3.0	1.00
		(1) Mannitol salt agar is an enriched and differential media.		
		(2) Selective components in MacConkey (MAC) agar are eosin Y and methylene blue which		
		inhibits the growth of gram positive bacteria.		
		(3) Blood agar is a differential media which is differentiated on the basis of bacterial ability to produce hemolysins.		
		(4) Bile salts and crystal violet present in the EMB agar media inhibits the gram positive bacteria growth and hence helps to differentiate between gram positive and gram negative.		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Object	tive Question			
Object 80	11080	The microscope which uses lasers to scan the specimen at a specific depth, illuminates one area at a time and blocks stray light to give an image with excellent contrast and resolution is (1) Differential Interference Contrast (DIC) Microscope (2) Confocal Microscope (3) Scanning Electron Microscope (4) Phase Contrast Microscope A1:1 A2:2 A3:3 A4:4	3.0	1.00
	tive Question			
81 Object	11081	A biochemist is pelleting down the microsomal fraction from a sample using ultracentrifuge at a speed of 20000 rpm. What would be RCF if the diameter of the rotor is 7 cm? (1) 15680 (2) 31360 (3) 7840 (4) 3920 A1:1 A2:2 A3:3 A4:4	3.0	1.00
	tive Question			
82	11082	In which of the given centrifuge rotors the value of r _{min} (radius minimum), r _{max} and r _{av} have the minimum deviation? (1) Fixed-angle rotor only (2) Vertical rotor only (3) Swing rotor only (4) Fixed-angle and Vertical rotors A1:1	3.0	1.00

						II	I
		A3:3					
		A4.4					
		A4 : 4					
Object	tive Question						
83	11083	Matc	h the items in l	ist I w	vith items in List II	3.0	1.00
			List I		List II		
		A	mRNA	I.	inhibits gene expression		
			tRNA	II.	carries amino acids for		
				(5)553	translation		
		C.	snRNA	111.	provides template for translation		
		D.	siRNA	IV.	involved in RNA splicing		
		(1) /	A-III, B-II, C-IV, I	D-I	#to		
			A-II, B-III, C-I, D				
			A-IV, B-III, C-II, I				
			A-II, B-IV, C-I, D				
		A1:1					
		A2:2					
		A3:3					
		A4 : 4					
	tive Question					3.0	1.00
84	11084	Which of the following cell types has the highest surface area to volume ratio?					1.00
		(1) R	RBC				
		(2) F	ibroblast				
		(3) K	(eratinocyte				
		(4) H	lepatocyte				
		A1:1					
		A2:2					
		A3:3					
		A4 : 4					
	tive Question						
85	11085	How	many grams o	of Alb	oumin and Aspirin will be required to set a reaction between one	3.0	1.00
		millin	nole of Albumir	and	$0 \hbox{-} 5$ millimole of Aspirin ? Given the molecular weight of Albumin is		
			00 Da and that o	ot As	DITIN IS 180 DA		
			1 g, 1 mg				
		(2) 6	67 g, 90 mg				
		(3) (0·1 g, 70 mg				
		(4) 6	67 µg, 90 mg				

		A1:1 A2:2 A3:3 A4:4		
Object	tive Question			
86	11086	Of the amino acids listed below, which three amino acids can undergo posttranslational modification? (1) Glycine, Leucine, Trypotophan	3.0	1.00
		(2) Serine, Threonine, Tyrosine		
		(3) Cysteine, Glutamine, Proline		
		(4) Glutamic acid, Arginine, Methionine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
87	11087	What is the common feature of the following peptides ? GKWLY, YLWKG, WGKLY, WLKGY	3.0	1.00
		(1) Same sequence		
		(2) Same amino acid composition		
		(3) Same conformation		
		(4) Same interactome		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	tive Question			
88	11088	What is the final concentration of NaCl upon mixing 10 ml of 10 mM NaCl with 990 ml of 10 mM NaCl ?	3.0	1.00
		(1) 0·1 mM		
		(2) 0·1 M		
		(3) 0·01 M		
		(4) 1·0 mM		

		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 89	ive Question		3.0	1.00

Which of the following molecules is a Peptide Nucleic Acid (PNA)?

Bases : A (adenine), T (thymine) G (guanine), C (cytosine)

	4_Live_GATB_E_1-160.html
HN Base	
N — Base	
(4) O $ $ $H_3N^+ - CH - C - N - CH_2$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	O O O O O O O O O O O O O O O O O O O
A1:1	
A2:2	
A3:3	
A4:4	

Objec	ctive Question			
90	11090	Among Wheat, Moong Dal, Rice and Bajra, the one with the highest protein content is (1) Bajra (2) Wheat (3) Moong dal (4) Rice	3.0	1.00
		A1:1 A2:2		
		A3:3		
		A4:4		
Objec	ctive Question			
91	11091		3.0	1.00

		Which one of the following is the most effective strategy in delivering a gene of interest in non-proliferating terminally differentiated cells ?		
		(1) Adeno-associated viral particle		
		(2) Retroviral particle		
		(3) Calcium chloride		
		(4) Lipofectamine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
92	11092	Given below are two statements — one is labelled as Assertion (A) and the other is labelled as	3.0	1.00
		Reason (R):		
		Assertion (A): Human adeno-associated virus is used to deliver single-stranded DNA as a vaccine that does not require multiple booster doses.		
		Reason (R): Such vaccines are generally administered along with an adenovirus or a		
		herpesvirus to avoid multiple booster doses.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		(1) Both A and R are correct and R is the correct explanation of A.		
		(2) Both A and R are correct, but R is NOT the correct explanation of A.		
		(3) A is correct, but R is not correct.		
		(4) A is not correct, but R is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
93	11093	In case of prokaryotes, the start codon is usually preceded by a sequence complementary to	3.0	1.00
		the		
		(1) 16S rRNA		
		(2) 5S rRNA		
		(3) 28S rRNA		
		(4) 18S rRNA		
		A1:1		
		A2:2		

		A3:3		
		A4 : 4 		
Object	ive Question			
94	11094	Given below are two statements — one is labelled as Assertion (A) and the other is labelled as Reason (R):	3.0	1.00
		Assertion (A): In the eukaryotic genes, TATA box aids in transcription.		
		Reason (R): The TATA box facilitates formation of pre-initiation complex for		
		transcription initiation.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		(1) Both A and R are correct and R is the correct explanation of A		
		(2) Both A and R are correct, but R is NOT the correct explanation of A		
		(3) A is correct but R is not correct		
		(4) A is not correct but R is correct		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 95	ive Question		3.0	1.00
	11075	Which one of the following cell types is involved in retaining the tattoo ink?	5.0	1.00
		(1) Macrophages		
		(2) Melanocytes		
		(3) Keratinocytes		
		(4) Lymphocytes		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
96	11096	Which one of the following does NOT refer to secondary structures in protein?	3.0	1.00
		(1) Beta sheet		
		(2) Twist		
		(3) Alpha helix		
		(4) Loop		
		(4) 200p		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
	ive Question			
97	11097	Starting with a single cell, what will be number of cells after 'n' cycles of cell division, given that in each cycle every cell divides into two cells?	3.0	1.00
		(1) 2 ²		
		(2) n ⁿ		
		(3) n^2		
		(4) 2 ⁿ		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
98	11098	The process of nuclear envelope breakdown during prophase is NOT aided by which one of	3.0	1.00
		the following?		
		(1) Extension of the filopodia		
		(2) Phosphorylation of nuclear membrane proteins		
		(3) Cytoplasmic microtubule dynamics		
		(4) Nuclear lamina disassembly		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
99	11099	Which one of the following is derived from the ectoderm?	3.0	1.00
		(1) Muscle		
		(2) Bone		
		(3) Nerve		
		(4) Blood		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Ohiect	ive Question			
100	11100	Regulatory B cells (Bregs) are important mediators of adaptive immunity and function mainly via the secretion of	3.0	1.00
		(1) IL-10		
		(2) IL-2		
		(3) TNF-alpha		
		(4) IFN-gamma		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
101	11101	A polymerase chain reaction yields 1·2 billion copies of DNA in 30 cycles. How many cycles	3.0	1.00
		would be needed to obtain its 300 million copies ?		
		(1) 7 cycles		
		(2) 8 cycles		
		(3) 15 cycles		
		(4) 28 cycles		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
102	11102	Neoschizomers are the restriction endonucleases with	3.0	1.00
		(1) identical recognition site but different cleavage sites		
		(2) different recognition sites but same cleavage site		
		(3) different recognition site but producing same sticky ends		
		(4) identical recognition and cleavage sites		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Object	ive Question			
103	11103	Telomerase, an RNA-protein complex adds telomeres at the end of chromosomes. What kind of enzymatic activity does it possess?	3.0	1.00
		(1) DNA-dependent DNA polymerase		
		(2) DNA-dependent RNA polymerase		
		(3) RNA-dependent DNA polymerase		
		(4) RNA-dependent RNA polymerase		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
104	11104	Which of the following is NOT true for the layers of gastrula?	3.0	1.00
		(1) The linning of the digestive tract will be formed by the endoderm.		
		(2) The bones will be formed by the mesoderm.		
		(3) The nerves will be formed by the ectoderm.		
		(4) The skin will be formed by the mesoderm.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
105	11105	Which of the following statement is NOT correct?	3.0	1.00
		(1) Transcription takes place in the nucleus of eukaryotic cells.		
		(2) In prokaryotes mRNA is not capped.		
		(3) Translation in eukaryotes takes place in the nucleus.		
		(4) In prokaryotes, DNA is replicated in the cytoplasm.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Object	ive Question			
106	11106	Rancidity in spoiled foods is mainly due to	3.0	1.00
		(1) Proteolytic enzymes		
		(2) Photosynthetic microbes		
		(3) Saccharolytic microbes		
		(4) Lipolytic microbes		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 107	ive Question		3.0	1.00
		The helical content of a protein can be directly determined using		
		(1) infrared spectrometer		
		(2) fluorescence (3) circular dichroism		
		(4) UV-visible spectrophotometer		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A7.7		
	ive Question			
108	11108	DNA conformation is left handed in	3.0	1.00
		(1) DNA B		
		(2) DNA C		
		(3) DNA Z		
		(4) DNA A		
		A1:1		
		Al. I		
		A2:2		
		A3:3		
		A3:3		
		A4:4		
	ive Question		2.6	11.00
109	11109		3.0	1.00
II.			II.	(I

		Which one of the following tissue culture approaches is most appropriate for production of		
		double halploid plants ?		
		(1) Protoplast fusion		
		(2) Embryo rescue		
		(3) Anther culture		
		(4) Meristem culture		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
Objecti	ve Question			
110	11110	Which one of the following is NOT an auxin?	3.0	1.00
		(1) Indole acetic acid (IAA)		
		(2) Indole butyric acid (IBA)		
		(3) 2,4-dichlorophenoxy acetic acid (2,4-D)		
		(4) 6-Benzylaminopurine (BAP)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question		3.0	1.00
		Which of the following is a heuristic algorithm that works faster than those driven by dynamic	5.0	1.00
		programming ?		
		(1) Needleman-Wunsch		
		(2) Smith-Waterman		
		(3) BLAST		
		(4) Gradient Descent		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question			
112	11112		3.0	1.00

		For an imaginary Martian species with three nucleotides (X, Y and Z), how many 3-letter codons are possible?		
		(1) 64		
		(2) 27		
		(3) 9		
		(4) 4		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
113	11113	What is the likely number of amino acids in a 11 KDa protein ?	3.0	1.00
		(1) 90		
		(2) 100		
		(3) 110		
		(4) 120		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
	11114	For a normal (Gaussian) distribution, decreasing the spread and increasing the height would lead to a	3.0	1.00
		(1) smaller value of standard deviation		
		(2) higher value of standard deviation		
		(3) smaller value of mean		
		(4) higher value of mean		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
	11115		3.0	1.00

		Which of the following is a method to conduct phylogeny of protein and DNA sequences?		
		(1) BLAST		
		(2) OMNIBUS		
		(3) Maximum likelihood		
		(4) DAVID		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
116	11116	The degree of inhibition for an enzyme catalyzed reaction at a particular inhibitor concentration is independent of the intitial substrate concentration. This is (1) Un-competitive inhibition (2) Non-competitive inhibition (3) Competitive inhibition (4) Mixed inhibition	3.0	1.00
		A2:2 A3:3 A4:4		
	ive Question			
117	11117	An enzymatic reaction exhibits Michaelis-Menten Kinetics. What will happen if the concentration of enzyme is doubled keeping [S ₀] >> [E] ? (1) Both K _m and V _{max} will remain same (2) Both K _m and V _{max} will increase (3) V _{max} will increase; K _m will remain same (4) K _m will increase; V _{max} will remain same A1:1 A2:2 A3:3 A4:4	3.0	1.00
	ive Question		3.0	1.00
110	11110		3.0	1.00

		A zero order liquid phase reaction Ak B, is being carried out in a batch with k = 10 ⁻³ moles/min. Reactor volume is 100 L. Initial concentration of A is 0·1 moles/L. What is the earliest time at which A is completely exhausted in the system? (1) 100 min (2) 200 min (3) 300 min (4) 40 min A1:1 A2:2 A3:3 A4:4		
Objecti	ive Question			I
119	11119	If the average diameter of air bubbles in a bioreactor is 2 mm and the gas hold up is 10% then the surface area of gas bubbles per liter of reactor is (1) 30 cm² (2) 300 cm² (3) 3000 cm² (4) 30000 cm² A1:1 A2:2 A3:3 A4:4	3.0	1.00
Objecti 120	ive Question		3.0	1.00
	ive Question	A good resolution in ion exchange chromatography is obtained when the two proteins have a (1) large difference in binding affinity and large dispersion (2) small difference in binding affinity and large dispersion (3) large difference in binding affinity and small dispersion (4) small difference in binding affinity and small dispersion A1:1 A2:2 A3:3 A4:4	3.0	1.00
121	11121		3.0	1.00

		Given below are two statement – one is labelled as Assertion A and the other is labelled as Reason R: Assertion A: Bacterial lipoplysaccharide (LPS) on its own does not induce memory B-cell in humans. Reason R: LPS does not activate T-cell. In light of the above statements, choose the most appropriate answer from the options given below. (1) Both A and R are correct and R is the correct explanation of A (2) Both A and R are correct, but R is NOT the correct explanation of A (3) A is correct but R is not correct (4) A is not correct but R is correct A1:1 A2:2 A3:3 A4:4		
Object	ive Question			
122	11122	The allergic immune response is characterized by the increased levels of (1) IgE (2) IgA (3) IgG (4) IgM A1:1 A2:2 A3:3 A4:4	3.0	1.00
	ive Question			
123	11123	The presence of antibody in infected patients serum can be detected by (1) ELISPOT (2) PCR (3) Northern blot (4) Western blot A1:1 A2:2 A3:3	3.0	1.00

		A4:4		
Ohieat	ive Onestion			
124	ive Question 11124	What will happen to immune cell development if we remove thymus from neonatal mice? (1) B-cell maturation will be impaired (2) Both B- and T-cell maturation will be impaired (3) T-cell maturation will be impaired (4) No effect on B- and T-cell maturation A1:1 A2:2 A3:3 A4:4	3.0	1.00
Objecti	ive Question			
125	11125	A series of spontaneous point mutations that occur gradually resulting in changes in Influenza virus surface antigens over a time is called (1) genomic instability (2) antigenic shift (3) antigenic drift (4) chromosome translocation A1:1 A2:2 A3:3 A4:4	3.0	1.00
126	11126		3.0	1.00
		Myasthenia gravis is an autoimmune disease where patient makes antibodies for its own (1) Acetylcholine receptor protein (2) NOD1 protein (3) TLR11 protein (4) RIG-I protein A1:1 A2:2 A3:3	5.0	

Object	ive Question						
	11127	Match	the items in List I with items	in Li	ist II	3.0	1.00
			List I		List II		
		A.	Toll like receptor 9	I.	Recognition of unmethylated		
					CpG dinucleotide		
		В.	T-helper cells	II.	Recognition of antigen with		
					MCH II complex		
		C.	T-cytotoxic cells	III.	Recongnition of antigen with		
		<u> </u>	Plasmacytoid dendritic	1\/	MCH I complex		
		D.	Plasmacytoid dendritic cells (pDCs)	IV.	Type I interferon (IFN) production		
					production		
			II, B-III, C-I, D-IV				
			I, B-III, C-IV, D-II				
			IV, B-II, C-III, D-I				
		(4) A-	I, B-II, C-III, D-IV				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
	ive Question						
128	11128		14.	ndin	g to Major Histocompatibility Complex (MHC) class II	3.0	1.00
		molec	ule ?				
		(1) 8	– 11 amino acids				
		(2) 21	– 27 amino acids				
		(3) 15	5 – 20 amino acids				
		(4) 50	7 amino acids				
		A1:1					
		A1 . 1					
		A2:2					
		A3:3					
		A4:4					
		Ат.т					
Object	ive Question						
129	11129	Tuber	culosis (TB) is caused by My	coba	acterium tuberculosis. The TB vaccine is made using	3.0	1.00
		(1) M	ycobacterium tuberculosis				
		NAME OF THE PARTY	ycobacterium bovis				
			uberculin				
		20 00	ycobacterial DNA				
		() ()	,				

		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object	ive Question						
130	11130	CD4 a	antigen is absent on			3.0	1.00
			-cells				
		(2) T					
			acrophage cells				
		(4) ga	amma-delta T cells				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object	ive Question						
131	11131	Match	the items in List I with ite	ms in Li	ist II	3.0	1.00
			List I		List II		
		A.	HIV	I.	RNA-dependent RNA		
				(5)	polymerase		
		B.	Influenza virus	II.	dsDNA virus		
		C.	Hepatitis C virus	III.	Segmented RNA genome		
		D.	Pox virus	IV.	Reverse Transcriptase		
		(1) A	-III, B-I, C-IV, D-II				
			-IV, B-I, C-II, D-III				
			-II, B-I, C-III, D-IV				
			-IV, B-III, C-I, D-II				
		A1:1					
		A2:2					
		A2.2					
		A3:3					
		A4:4					
Object	ive Question						
	11132					3.0	1.00

		Hepatitis B virus genome is		
		(1) ssDNA		
		(2) dsDNA		
		(3) ssRNA		
		(4) partially dsDNA		
		(1) partially dobited		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objects 133	ve Question		3.0	1.00
		nerpes simplex virus maintains latericy in		
		(1) Neuronal cells		
		(2) Liver cells		
		(3) Epithelial cells		
		(4) Kidney cells		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
Object	ve Question			
134	11134	Pox virus replicates in the	3.0	1.00
		(1) Cytoplasm		
		(2) Nucleus		
		(3) Golgi		
		(4) Mitochondria		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti 135	ve Question		3.0	1.00
133	11133		5.0	1.00

		Which of the following viruses is a plus-sense single-stranded RNA virus?		
		(1) Dengue virus		
		(2) Rotavirus		
		(3) Adenovirus		
		(4) Influenza virus		
		(4) milderiza viide		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
136	11136	In N-linked glycoproteins, carbohydrate moiety is attached to which of the following amino acids ?	3.0	1.00
		(1) Valine		
		(2) Asparagine		
		(3) Serine		
		(4) Threonine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
	11137	The catalytic triad of Chymotrypsin is composed of	3.0	1.00
		(1) Asp, Ser, His		
		(2) Arg, Ser, His		
		(3) Glu, Thr, Lys		
		(4) Glu, Asp, Tyr		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
138	11138		3.0	1.00

		A mixture of proteins (A, B, C and D) is separated on a Sephadex G-200 column. The proteins elute in the order of A, B, C and D. Assuming that all proteins are globular and monomeric, the protein with minimum electrophoretic mobility on SDS-PAGE will be (1) A (2) B (3) C (4) D A1:1 A2:2 A3:3 A4:4									
Objecti	ve Question										
	11139	Match	the items in List I with items	in Li	st II	3.0	1.00				
			List I		List II						
		Α.	β-Oxidation	I.	Ribulose Bisphosphate						
		/ ***	p extraction	5.50	Carboxylase						
		В.	Glycolysis	11.	Phosphofructo kinase-I						
					Phosphoenolpyruvate						
					carboxylase						
		D.	Calvin cycle	IV.	Thiolase						
		(1) A-	III, B-IV, C-II, D-I								
		(2) A-	II, B-IV, C-I, D-III								
			IV, B-II, C-III, D-I								
			III, B-II, C-IV, D-I								
		A1:1	, , ,								
		A2:2									
		A3:3									
		A4:4									
Objecti	ve Question										
	11140	Lipid F	Rafts are composed of the			3.0	1.00				
		(1) ch	olesterol and cardiolipin								
		(2) sp	hingolipid and cardiolipin								
		(3) sp	hingolipid and cholesterol								
		(4) ch	olesterol but no sphingolipid								
		A1:1									
		A2:2									

		A3:3			
		A4 : 4			
	ive Question				
141	11141	Match the items in List I with items in List II		3.0	1.00
		List I (Pollutant) List II	(Impact on environment)		
		A. Carbon monoxide I. Green	house effect		
		B. Hydrocarbons II. Photo	chemical smog		
		C. Oxides of nitrogen III. Acid ra	ain		
		D. Ozone near earth's surface IV. Impair	ed plant growth		
		(1) A-II, B-III, C-IV, D-I			
		(2) A-III, B-II, C-I, D-IV			
		(3) A-II, B-III, C-I, D-IV			
		(4) A-I, B-II, C-III, D-IV			
		A1:1			
		12.2			
		A2:2			
		A3:3			
		A4 : 4			
		A4 . 4			
Objecti	ive Question				
142	11142	The presence of excess nutrients in aquatic sy	stem will lead to	3.0	1.00
		(1) Crustacean bloom			
		(2) Algal bloom			
		(3) Coral bloom			
		(4) Lotus bloom			
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
	ive Question		J		
143	11143	Which one of the following is commonly us glucose?	ed for converting cellulose raw materials into	3.0	1.00
		(1) Saccharomyces cerevisiae			
		(2) Acinetobacter radioresistens			
		(3) Trichoderma viride			
		(4) Bacillus amyloliquifaciens			
		The second secon			

		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question		3.0	1.00
144	11144	The biocide DDT (a chlorinated hydrocarbon) has a half-life of around	3.0	1.00
		(1) < 1 year		
		(2) 2 – 15 years		
		(3) 16 – 30 years		
		(4) > 30 years		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01: (
	ive Question	Which are of the following weets treatment evetons is devoid of any making material and it	3.0	1.00
		Which one of the following waste treatment system is devoid of any packing material, and it recycles internal biomass based on gravity?		
		(1) UASB		
		(2) FSSB		
		(3) RBC		
		(4) Trickling filter		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11146	Which of the following is true for a water sample with a BOD value of more than 50 ppm ?	3.0	1.00
		(1) The DO content would be less than 6 ppm		
		(2) The water is clean and potable		
		(3) Aquatic life will thrive		
		(4) The COD of the sample is 25 ppm		
		2000 ADDR		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Ohioati	ive Question			
	11147	The most widely used method for removing of particulate matter from gas is	3.0	1.00
		(1) Electrostatic precipitation		
		(2) Chemo-osmotic precipitation		
		(3) Magnetostatic precipitation		
		(4) Chemo-electrostatic precipitation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
148	11148	The acid involved in ocean acidification is	3.0	1.00
		(1) Carbonic acid		
		(2) Sulphuric acid		
		(3) Phosphoric acid		
		(4) Nitric acid		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
149	11149	Which of the following continent is the driest one?	3.0	1.00
		(1) Africa		
		(2) Antarctica		
		(3) Australia		
		(4) Europe		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Objecti	ive Question			
Objecti 150	ive Question 11150	Enhanced CO ₂ concentration in environment would lead to in plants. (1) increased water uptake and reduced photosynthesis (2) increased photosynthesis and increased water demand (3) decreased photosynthesis and decreased water demand (4) decreased O ₂ emission and no change in photosynthesis A1:1 A2:2 A3:3 A4:4	3.0	1.00
Objecti	ive Question			
151	11151	In plant mycorrhizal fungi association, what is the most appropriate exchange between two organisms or partners? (1) Plant provides carbon to fungi and in return gets minerals (2) Fungi provides protein to plant and in return gets water (3) Plant provides minerals to fungi and in return gets carbon (4) Plant and fungi do not exchange anything A1:1 A2:2 A3:3 A4:4	3.0	1.00
	ive Question		2.0	1.00
152	11152	Pattern of inheritance of flower colour in <i>Mirabilis jalapa</i> is similar to that of (1) ABO blood group in human beings (2) Flower colour in snapdragon (3) Fur colour in rabbit (4) Skin colour in human beings A1:1 A2:2 A3:3 A4:4	3.0	1.00
Objecti	ive Question			

153 11153		Given below are two statements :				
		Statement I: In general, a higher auxin: cytokinin ratio will induce root				
		formation under in vitro culture conditions in plants.				
		Statement II: NAA is a cytokinin and BAP is an auxin.				
		In light of the above statements, choose the most appropriate answer from the options given below.				
		(1) Both Statement I and Statement II are correct.				
		(2) Both Statement I and Statement II are NOT correct.				
		(3) Statement I is correct but Statement II is not correct.				
		(4) Statement I is not correct but Statement II is correct.				
		A1:1				
		A2:2				
		A2:2				
		A3:3				
		A4:4				
Object 154	tive Question		3.0	1.00		
134	11134	Complete the following statement with the correct option	3.0	1.00		
		Agrobacterium-mediated plant transformation in the laboratory				
		(1) is not influenced by the genotype of the host plant.				
		(2) always leads to integration of a single copy of the T-DNA in the host cell.				
		(3) is faciliated by the use of selection marker genes to allow preferential growth of transformed cells.				
		(4) requires the expression of opine genes for the production of transgenic plants.				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
	tive Question					
155	11155	which one of the following plant tissue culture techniques can be most effectively used for	3.0	1.00		
		production of virus-free plants ?				
		(1) Protoplast culture				
		(2) Culture of shoot apical meristem				
		(3) Somatic embryogenesis from calli of leaf explants				
		(4) Production of cybrids				
		A1:1				
		A2:2				
		A3:3				

		A4:4		
Object	ive Question			
156	11156	A suicide plasmid vector lacks the following	3.0	1.00
		(1) antibiotic marker		
		(2) origin of replication		
		(3) multiple cloning sites		
		(4) site for integration		
		(4) Site for integration		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11157	Animal gut does NOT possess the enzymes required for digesting	3.0	1.00
		(1) glycogen		
		(2) starch		
		(3) cellulose		
		(4) proteins		
		() Proteins		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11158	Foreign DNA can NOT be transferred into a zygote by which one of the following methods ?	3.0	1.00
		(1) Transduction		
		(2) Microinjection		
		(3) Electroporation		
		(4) Conjugation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Object	tive Question							
159	11159	Leptin	receptor is primarily preser	nt in th	e following tissue		3.0	1.00
					-			
		(1) Hepatic (2) Muscle						
		(3) Adipose						
		(4) Ne	euronal					
		A1:1						
		A2:2						
		A3:3						
		A4:4						
	tive Question							
160	11160	Match	the items in List I with item	s in Li	st II	16	3.0	1.00
			List I		List II			
		A.	Beriberi	1.	Cobalamin			
		В.	Megaloblastic Anemia	II.	Thiamin			
		C.	Scurvy	III.	Folic acid			
		D.	Pernicious Anemia	IV.	Ascorbic Acid			
		(1) A-	II, B-IV, C-III, D-I					
			III, B-II, C-IV, D-I					
			I, B-III, C-IV, D-II					
			II, B-III, C-IV, D-I					
		A1:1						
		A2:2						
		A3:3						
		A4:4						
		<i>1</i> 3. Τ. Τ						