PREVIEW QUESTION BANK(Dual)

Module Name : EARTH ATMOSPHERIC OCEAN AND PLANETARY SCIENCES - 702 Exam Date : 25-Jul-2024 Batch : 09:00-12:00

Sr. Client Que	Question Body and Alternatives	Marks	Negativ Marks
Objective Question			
1 702001 An	ecologist catches 25 fish tags them and releases them back in the pond. She ches 30 fish on the next day, of which 10 carry the tag. Assuming that the fish the pond remain unchanged and each fish has equal probability of being light, what is the estimated number of fish in the pond?		
1. 2. 3. 4.	30 75 150 300		
मध	परिस्थित वैज्ञानिक 25 मछलियां पकड़, उन्हें नामांकित कर वापिस तालाब में छोड़ देती है। अगले दिन वह 30 लियां पकड़ती है जिनमें से 10 नामांकित होती हैं। यह मानते हुए कि तालाब में मछलियों की संख्या अपरिवर्तित रहती और प्रत्येक मछली के पकड़े जाने की प्रायकिता समान है, तालाब में मछलियों की अनुमानित संख्या कितनी है?		
1. 2. 3. 4.	30 75 150 300		
A1 :	1 1		
A2 :	2 2		
A3 :	3 3		
A4 :			
Objective Ougstine	-		
Objective Question 2 702002			

The following dishes are offered in a restaurant.

Starter: Tomato Soup or Vegetable Salad or Chicken Soup Main course: Chicken Biryani or Fish Biryani or Veg Biryani

Gulabjamun or Rasagulla Dessert:

A meal is prepared selecting one item from each category. What is the probability that a randomly drawn up menu is vegetarian?

- 1. 1/3
- 2. 5/8
- 3. 2/9
- 1/2

एक रेस्त्रां में निम्नलिखित व्यंजन प्रस्तुत हैं।

आरंभक : टमाटर सूप या वनस्पति सलाद या चिकन सूप

मुख्य व्यंजन: चिकन बिरयानी या मछली बिरयानी या सब्जी विरयानी

मीठा : गुलाबजामुन या रसगुल्ला

प्रत्येक वर्ग से एक वस्तु का चयन कर एक थाली परोसी जाती है। यादृच्छिक रूप से बनायी गयी थाली के शाकाहारी होने की प्रायिकता कितनी है?

- 1. 1/3
- 2. 5/8
- 3. 2/9
- 4. 1/2
- A1: 1
 - 1
- A2: 2
- 2
- A3: 3
 - 3
- A4: 4

Objective Question

3 702003

An eagle is sitting at the top of a 100 m high vertical cliff and a mouse is at the base of the cliff. The mouse starts running away from the cliff on a level ground in a straight line at a speed 10 m/s. The eagle spots the mouse and dives at 45° to the ground at a speed of 20 m/s and captures the mouse. The time at which the eagle started the dive is

- 1. around 3 s after the mouse started running.
- around 5 s after the mouse started running.
- 3. around 7 s after the mouse started running.
- 4. the same at which the mouse started running.

एक गिद्ध एक 100 m ऊँची खड़ी चट्टान की चोटी पर बैठा है और एक चूहा इस खड़ी चट्टान के तले है। चट्टान के तले से दूर, एक समतल मैदान की ओर सीधी रेखा में 10 m/s से चूहा दौड़ना आरंभ करता है। चूहे को देखकर 20 m/s की गित्स पिद्ध 45° पर गोता लगाकर चूहे को पकड़ लेता है। गिद्ध ने जिस समय गोता लगाना आरंभ किया वह समय चूहे के दौड़ना आरंभ करने के

- लगभग 3 s बाद है।
- 2. लगभग 5 s बाद है।
- 3. लगभग 7 s बाद है।
- 4. समान है।
- A1: 1
- A2: 2
 - 2
- A3: 3
 - 3
- A4:4
-

Two vessels contain $\frac{3}{8}$ L and $\frac{2}{7}$ L of alcohol. Water is added to both vessels to make each solution measure 1L. When these solutions are mixed, the alcohol to water ratio would be approximately

- 1. 16:21
- 2. 1:4
- 3. 1:2
- 4. 1:3

दो बर्तनों में $\frac{3}{8}$ L और $\frac{2}{7}$ L एल्कोहल है। दोनों बर्तनों में पानी मिला कर प्रत्येक घोल को 1L बनाया जाता है। इन घोलों को जब मिलाया जाए तो एल्कोहल का पानी से अनुपात लगभग होगा

- 1. 16:21
- 2. 1:4
- 3. 1:2
- 4. 1:3
- A1: 1
- A2: 2
 - 2
- A3: 3
 - 3

4

A4: 4

Objective Question

5 702005

A wholesale shopkeeper purchased 200 identical watches and sold the first 50 at 10% profit, the next 50 at 20% profit, the next 50 at 25% profit and the last 50 at 40% profit. If his total profit was Rs 19000, at what total cost did he buy the watches?

- 1. Rs 76000
- 2. Rs 80000
- 3. Rs 86000
- 4. Rs 98000

किसी थोक दुकानदार ने एक जैसी 200 घड़ियां खरीदी और उनमें से प्रथम 50 घड़ियों को 10% लाभ से, अगली 50 घड़ियों को 20% लाभ से, अगली 50 घड़ियों को 25% लाभ से और अंतिम 50 घड़ियों को 40% लाभ से बेचा। यदि उसका कुल लाभ Rs 19000 था तो उसने घड़ियों को किस कुल क़ीमत पर खरीदा था?

- 1. Rs 76000
- 2. Rs 80000
- 3. Rs 86000
- 4. Rs 98000
- A1: 1
 - 1
- A2: 2
- .
- A3: 3
 - 3
- A4: 4

	4
jective Qu	estion
702006	BOTANY is to PLANTS as PHILOSOPHY is to
	1. REGULATIONS
	2. RELIGIONS
	3. IDEAS
	4. POLITICS
	वनस्पतिशास्त्र का पौधों से वही संबंध है जो दर्शनशास्त्र का से है।
	 1. नियम
	2. धर्म
	3. विचार
	4. राजनीति
	A1: 1
	A2: 2 2
	A3: 3
	3
	A4: 4
	4
jective Qu 702007	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer.
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer.
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलों ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. vo पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर विकार रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. vo uia-rionen syntac ri vo adde, vo siact, vo seauro, vo omionit silv sionificat there rionen it vo track it omionit rionen syntac rionen synta
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है।
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. vo uia-rionen syntac ri vo adde, vo siact, vo seauro, vo omionit silv sionificat there rionen it vo track it omionit rionen syntac rionen synta
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है।
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है। 4. डॉक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है। 5. विकार क्रिक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है। 6. विकार क्रिक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है। 7. विकार क्रिक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है।
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है। 4. डॉक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है। A1: 1 1
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर मिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिले ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है। 4. डॉक्टर, कलाकार, उकील, अध्यापक, इंजीनियर है। A1: 1 1. 1 1. 1 1. 1 1. 2: 2 2. 2
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर भिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिलें ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिल तक रहने वालों का क्रम 1. कलाकार, ऑक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, ऑक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, वकील, अध्यापक, वकील है। 4. डॉक्टर, कलाकार, वकील, अध्यापक, इंजीनियर है। Al: 1 1 A2: 2 2 A3: 3
	In a five-floor building, a lawyer, a doctor, a teacher, an artist and an engineer occupy different floors. The artist has to go up three floors to meet the engineer, whereas the engineer has to come down four floors to visit the doctor. The lawyer lives just a floor above the teacher. The floors are occupied from the lowest to the topmost by 1. artist, doctor, teacher, lawyer, engineer. 2. artist, doctor, teacher, engineer, lawyer. 3. doctor, artist, teacher, lawyer, engineer. 4. doctor, artist, lawyer, teacher, engineer. एक पांच-मंजिला इमारत में एक वकील, एक डॉक्टर, एक अध्यापक, एक कलाकार और इंजीनियर मिन्न मंजिलों पर रहते हैं। कलाकार को इंजीनियर से मिलने के लिए तीन मंजिले ऊपर जाना पड़ता है, जबिक इंजीनियर को डॉक्टर से मिलने के लिए चार मंजिलें नीचे आना पड़ता है। अध्यापक के ठीक एक मंजिल ऊपर वकील रहता है। सबसे निचली मंजिल से सबसे ऊपरी मंजिल तक रहने वालों का क्रम 1. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 2. कलाकार, डॉक्टर, अध्यापक, वकील, इंजीनियर है। 3. डॉक्टर, कलाकार, अध्यापक, वकील, इंजीनियर है। 4. डॉक्टर, कलाकार, उकील, अध्यापक, इंजीनियर है। A1: 1 1. 1 1. 1 1. 1 1. 2: 2 2. 2

~	<u>.</u>
ective Qu	uestion
702008	A boy talking about his age said "The day before yesterday I was 15, now I am 16 and next year I shall turn 18". Then
	SECURIO MANDE CONTRACTO CONTRACTO DE SECURIO DE SECURIO DE MANDE CONTRACTO DE MANDE CONTRACTORDO DE MANDE CONTRACTO DE CONTRACTO DE MANDE CONTRACTO DE CONTRACTO DE CONTRACTO DE CONTRACTO DE CONTRACTO DE
	1. he must have lied.
	 he was making the assertion on 29th February. his birthday is on 29th February and he was making the assertion on 1st
	March.
	 his birthday is on 31st December and he was making the assertion on 1st January.
	एक लड़का अपनी आयु विषयक कहता है "बीते हुए कल के एक दिन पूर्व मेरी आयु 15 थी, अभी में 16 का हूँ और
	अगले वर्ष मेरी आयु 18 हो जाएगी", तब
	1. उसने झूठ बोला होगा।
	2. वह 29 फरवरी को ऐसा कह रहा रहा था।
	3. उसकी जन्मतिथि 29 फरवरी है और वह 1 मार्च को ऐसा कह रहा था।
	 उसकी जन्मतिथि 31 दिसंबर है और वह 1 जनवरी को ऐसा कह रहा था।
	4. उसका जन्माताय उमादसंबर हे और यह में जनवरा का ऐसा कहे रहा था।
	A1: 1
	1
	A2: 2
	2
	A3: 3
	3
	A4: 4
	4
ective Qı	uestion
702009	The addition of a three-digit number and the number with the same digits in reverse order, is 1089. The middle digit of that number must be
	1. 9
	2. 8
	3. 0
	4. 4
	एक तीन अंकों की संख्या और उस संख्या के उल्टे क्रम से बनी संख्या का योग 1089 है। उस संख्या का मध्य अंक
	होना चाहिए
	1. 9
	2. 8
	3. 0
	4. 4
	A1: 1
	A2: 2
	A3: 3
	3 A4: 4 4

12 702012

Beginning from April of a year, the rate at which a tree became taller increased linearly for 15 weeks when it was trimmed down. From then on, the rate decreased linearly for the next 15 weeks.

Which graph correctly shows the height of the tree against time during this period?

- 1. A
- 2. B
- 3. C
- 4. D

किसी वर्ष के अप्रैल से आरंभ कर, एक वृक्ष के लंबे होने की दर 15 सप्ताह तक रैखिक रूप से बढ़ी। तब वृक्ष को छांट दिया गया। उसके बाद से, अगले 15 सप्ताहों के लिए दर रैखिक रूप से घटी।

समय के साथ वृक्ष की ऊँचाई को सही रूप से कौन सा ग्राफ दर्शाता है?

- 1. A
- 2. B
- 3. C
- 4. D
- A1: 1
 - .
- A2: 2
 - 2
- A3: 3

Objective Question

13 702013

Statistics of a certain test conducted to determine a disease are given in the table.

Category	Number of persons
True positive	8
False negative	3
False positive	2
True negative	12

The number of persons actually having the disease are

- 1. 11
- 2. 8
- 3. 20
- 4. 3

किसी बीमारी के निर्धारण के लिए किए गए परीक्षणों की सांख्यिकी सारणी में दी गई है।

वर्ग	व्यक्तियों की संख्या
सत्य सकारात्मक	8
असत्य नकारात्मक	3
असत्य सकारात्मक	2
सत्य नकारात्मक	12

वास्तव में बीमारीग्रस्त व्यक्तियों की संख्या है

- 1. 11
- 2. 8
- 3. 20
- 4. 3
- A1: 1
 -]
- A2: 2
 - 2
- A3: 3
 - 3
- A4: 4
- ,

Objective Question

14 702014

Two chords of a circle meeting at an angle 60° bisect each other. If the length of one chord is 10 cm, the length of the other chord (in cm) is

- 1. 5√3
- 2. 10/√2
- 3. 10/√3
- 4. 10

		एक वृत्त में 60° कोण पर मिलने वाली दो जीवाएं एक दूसरे को द्विभाजित करती हैं। यदि एक जीवा की लंबाई 10 cm है, तो दूसरी जीवा की लंबाई (cm में) है
		1. 5√3
		2. 10/√2
		3. 10/√3
		4. 10
		A1: 1
		1
		A2: 2
		2 A3: 3
		3
		A4: 4
		4
Obje	ective Qu	lestion
	702015	
		In a family, A is the son of P and brother of V. N is the sister of V. S is the nephew of V and B is the daughter-in-law of A. M is the mother of N. B is related to M as
		the
		 Granddaughter. Daughter-in-law.
		3. Grandson's wife.
		4. Mother.
		एक परिवार में A, P का पुत्र है और V भाई है। N, V की बहन है। S, V का भतीजा है और B, A की पुत्र-वधु है। M, N
		की माता है। B, M से किस तरह संबंधित है
		1. पौत्री
		2. पुत्र-वधु
		3. पौत्र-वधु
		4. माता
		A1: 1
		1
		A2: 2
		A3: 3
		3 A4: 4
		4
Obie	ective Qu	
	702016	

The variation in the per carat price of diamond by caratage is shown in the graph.

A person wants to buy 4 identical sized diamonds for Rs.4.5 lakh. What is the largest size of one such diamond (in carat)?

- 1. 0.5
- 2. 0.75
- 3. 1.125
- 4. 0.625

ग्राफ में हीरे की प्रति कैरेट क़ीमत (Price in Rs. lakh/carat) में कैरेट-मान (Weight of a piece in carat) के अनुसार परिवर्तन को दर्शाया गया है।

एक व्यक्ति एक माप के 4 हीरे Rs.4.5 लाख में खरीदना चाहता है। खरीदे जा सकने वाले सबसे बड़े हीरे का माप (कैरेट में) क्या है?

- 1. 0.5
- 2. 0.75
- 3. 1.125
- 4. 0.625
- A1: 1
- A2: 2
 - 2
- A3: 3
 - 3
- A4: 4

Objective Question

The graph depicts anti-predator calling behaviour in squirrels. Which one of the following conclusions can be drawn from the graph?

- 1. Adult males are less likely to see a predator than adult females.
- 2. Adult females make higher than expected anti-predator calls.
- 3. There are more adult females than adult males.
- Juvenile males do not make anti-predator calls.

गिलहरियों में शिकारी विरोधी चीत्कार की प्रवृत्ति को ग्राफ में दर्शाया गया है।

निम्नलिखित निष्कर्षों में से कौन सा निष्कर्ष ग्राफ से निकाला जा सकता है?

- 1. वयस्क मादाओं की तुलना में वयस्क नरों द्वारा शिकारी को देख पाने की संभावना कमतर है।
- वयस्क मादाएं अपेक्षा से अधिक शिकारी विरोधी चीत्कार करती हैं।
- वयस्क नरों की तुलना में वयस्क मादाओं की संख्या अधिक हैं।
- किशोर नर शिकारी विरोधी चीत्कार नहीं करते हैं।

A4: 4

	4
Objective Qu	
18 702018	Which of the following can be a perfect square if X and Y are decimal digits?
	1. 93XY215
	2. 7XY0625
	3. 613XY45
	4. XY21375
	निम्नलिखित में से कौन सी संख्या पूर्ण वर्ग हो सकती है यदि X एवं Y दशमलव अंक हैं?
	1. 93XY215
	2. 7XY0625
	3. 613XY45
	4. XY21375
	A1: 1
	A2: 2
	A3: 3
	3
	A4: 4
	4
Objective Qu	estion
19 702019	In a leap year that began on a Tuesday, the third Saturday of March would fall on
	1. March 14
	2. March 15
	3. March 16
	4. March 21
	एक अधिवर्ष जो एक मंगलवार को आरंभ हुआ, उसके मार्च माह का तीसरा शनिवार पड़ेगा
	1. 14 मार्च को
	2. 15 मार्च को
	3. 16 मार्च को
	4. 21 मार्च को
	A1: 1
	1
	A2: 2
	A3: 3
	3
	A4: 4
	4
Objective Qu	
20 702020	

Equality of which of the following quantities in two data sets of the **same size** will ensure equality of their standard deviations?

- Their means.
- 2. The sums of positive and negative deviations from the respective means.
- 3. The averages of squares of all terms.
- The averages of squares of all terms and their means.

निम्नलिखित मात्राओं में से कौनसी मात्राओं की समानता दो डाटा-समूहों के मानक विचलनों की समानता सुनिश्चित करेंगे?

- 1. उनके माध्य।
- 2. उनके क्रमशः माध्यों से धनात्मक एवं ऋणात्मक विचलनों का योग।
- सभी पदों के वर्गों के औसत।
- 4. सभी पदों के वर्गों के औसत और उनके माध्य।

A1: 1

1

A2: 2

.

A3: 3

3

A4: 4

4

Objective Question

21 702021

Which one of the following meteorite types is NOT derived from differentiated planetary bodies?

- 1. Iron meteorite
- Shergottite
- Eucrite
- 4. Carbonaceous chondrite

इनमें से कौन सा उल्कापिंड, ग्रहों के विभेदीकरण से नहीं बनता है?

- 1. लौह उल्कापिंड
- 2. शरगोट्टाइट्
- 3. इयूक्राइट्
- 4. कार्बोनेसिएस कोन्ड्राइट

A1: 1

1

A2: 2

2

A3: 3

3

	A4: 4 4
Objective C	
22 702022	
	Which of the following types of ore deposits are NOT formed by magmatic or magmatic-hydrothermal processes?
	1. Sudbury-type Ni-Cu deposits
	Bushveld-type chromite deposits
	Ironstone deposits
	Porphyry- type Cu deposits
	in a complyty of the control of the
	इनमें से किस प्रकार के अयस्क निक्षेप मैग्मीय अथवा मैग्मीय उष्णज
	द्वारा नहीं बनते हैं?
	1. सडबरी प्रकार के Ni-Cu निक्षेप

- 2. बुशवेल्ड प्रकार के क्रोमाइट निक्षेप
- 3. लौहशैल निक्षेप
- 4. पोरफाइरी प्रकार के Cu निक्षेप

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

23 702023

Which one of the following sequences shows the correct order of their first appearance in the geological record since Precambrian?

- 1. Land plants- Amphibians- Ediacaran biota
- 2. Ediacaran biota- Land plants- Amphibians
- 3. Land plants- Ediacaran biota- Amphibians
- 4. Ediacaran biota- Amphibians- Land plants

प्रिकेम्ब्रियन से अब तक भू-भौतिक रिकार्ड में निम्न अन्क्रमों में से कौ प्रकटन के आधार पर सही है? भूमि पादप - उभयचर - इडिआकरन जैव 2. इडिआकरन जैव - भूमि पादप - उभयचर 3. भूमि पादप - इडिआकरन जैव - उभयचर 4. इडिआकरन जैव - उभयचर - भूमि पादप A1: 1 A2: 2 A3: 3 A4: 4 Objective Question 24 702024 Grain-size distribution in a flash flood deposit is likely to be Unimodal 1. Bimodal 3. Trimodal Multimodal एक आकस्मिक बाढ़ निक्षेप में कण-आकार वितरण 1. एक-बह्लकी वितरण 2. द्वि-बहुलकी वितरण 3. त्रि-बह्लकी वितरण 4. विविध-बह्लकी वितरण A1: 1 A2: 2

A3: 3

A4: 4

A1: 1

A2: 2

A3: 3

```
A4: 4
Objective Question
27 702027
         In Augite, how many O-atoms of each [SiO4] tetrahedron are shared with other
              0
         1.
             2
         अगाइट में प्रत्येक [SiO4] चतुष्फलक के कितने O-अणु दूसरे चतुष्फलव
         होते हैं?
         1.
         2. 2
         3.
         4.
         A1: 1
         A2: 2
         A3: 3
         A4: 4
Objective Question
28 702028
         Activity of 14 mg of <sup>14</sup>C (\lambda = 3.84 \times 10^{-12} s^{-1}) in decays/second is
         approximately
            6.023 \times 10^{20}
         2. 2.31 \times 10^9
         3. 2.31 \times 10^{12}
            3.84 \times 10^{11}
          ^{14}C (\lambda = 3.84 \times 10^{-12} s^{-1}) के 14 mg की सक्रियता क्षय/सेकेंड में लग
         होगी।
              6.023 \times 10^{20}
          2. 2.31 \times 10^9
          3. 2.31 \times 10^{12}
          4. 3.84 \times 10^{11}
```

		A1: 1
		1
		A2: 2
		$\frac{1}{2}$
		A3: 3
		3
		A4: 4
		4
	702029	lestion
	702027	Which one of the following minerals is NOT a part of the Bowen's discontinuous
		reaction series?
		1. Olivine
		2. Amphibole
		3. Enstatite
		4. Andesine
		इन दिये गये खनिजों में से कौन सा एक बोवेन असंतत अभिक्रिया श्रेण
		इन दियं गयं खानजा म स कान सा एक बावन असतत आमाक्रया अप
		V -
		है?
		1. ओलीविन
		2
		2. एम्फीबोल
		3. एन्स्टेटाइट
		4. एन्डेसीन
		4. १०५५।ज
		A1: 1
		1
		A2: 2
		2
		A3: 3
		3
		A4: 4
		4
Obi	ective Qu	
_	702030	
		An imaginary line representing the first appearance of a particular metamorphic
		index mineral in the field is called an
		1. isopleth
		2. index line
		3. isograd
		4. iso-facies line
		i. loo laded line
II	11 1	

एक विशिष्ट कायांतरण सूचक खनिज के फील्ड में प्रथम प्रकटन का प्र वाली अधिकल्पित रेखा को _____ कहते हैं ।

- 1. आइसोप्लेथ
- 2. सूचक रेखा
- 3. आइसोग्रेड
- 4. सम-संलक्षणी (आइसो-फैसीज) रेखा

A1: 1

A2: 2

2

A3: 3

.

A4: 4

Objective Question

31 702031

Moving towards the Sun from outer space, the correct order of appearance of the following celestial objects/ fields is

- 1. Heliopause, Ooort cloud, Kuiper Belt, Asteroid Belt
- 2. Ooort Cloud, Kuiper Belt, Heliopause, Asteroid Belt
- Ooort Cloud, Heliopause, Kuiper Belt, Asteroid Belt
- Kuiper Belt, Ooort Cloud, Asteroid Belt, Heliopause

दिये गये खगोलीय पिंडों / क्षेत्रों का बाह्य आकाश से सूर्य की तरफ ज अनुक्रम कौन सा है?

- 1. हेलियोपांज, ऊर्ट बादल, क्विपर पट्टी, क्ष्द्रग्रह पट्टी
- 2. उर्ट बादल, क्विपर पट्टी, हेलियोपांज, क्षुद्रग्रह पट्टी
- 3. उर्ट बादल, हेलियोपाँज, क्विपर पट्टी, क्षुद्रग्रह पट्टी
- 4. क्विपर पट्टी, उर्ट बादल, क्षुद्रग्रह पट्टी, हेलियोपॉज

A1: 1

]

A2: 2

2

A3: 3

bjective Ques 2 702032	Mai: 4 4 stion Which one of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 4. illite, kaolinite, gibbsite 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट 3. केओलिनाइट, इलाइट, गिब्बसाइट
bjective Ques 2 702032	Which one of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. application of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, gibbsite 3. kaolinite, gibbsite 4. illite, kaolinite, gibbsite 4. illite, kaolinite, gibbsite 5. application of the following is the correct sequence of products of increasing weathering weathering of orthoclase? 1. illite, kaolinite, pibbsite 2. application of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, illite, hematite 3. kaolinite, illite, pibbsite 4. illite, kaolinite, gibbsite 4. illite, kaolinite, gibbsite 5. application of the following is the correct sequence of products of increasing weathering weathering of orthoclase? 1. illite, kaolinite, illite, hematite 3. kaolinite, illite, pibbsite 4. illite, kaolinite, gibbsite 5. application of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, pibbsite 2. application of the following is the correct sequence of products of increasing weathering of orthoclase? 2. application of the following is the correct sequence of products of increasing weathering of orthoclase? 2. application of the following is the correct sequence of products of increasing weathering of orthoclase? 2. application of the following is the correct sequence of products of increasing weathering of the following is the correct sequence of products of increasing weathering of the following is the correct sequence of products of the following is the correct sequence of products of the following is the correct sequence of products of the following is the correct sequence of the following is the correct sequence of the following is the correct sequence of the following is the correct seq
702032	Which one of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. an illite, kaolinite, gibbsite 4. illite, kaolinite, gibbsite 4. illite, kaolinite, gibbsite 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट
702032	Which one of the following is the correct sequence of products of increasing weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. aolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट
	weathering of orthoclase? 1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. Haolinite, gibbsite 4. illite, kaolinite, gibbsite 4. The series of t
	1. illite, kaolinite, hematite 2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. saolinite, gibbsite 4. illite, kaolinite, gibbsite 4. sailfara ara ara ara ara ara ara ara ara ara
	2. kaolinite, illite, hematite 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 3. saolinite, illite, gibbsite 4. illite, kaolinite, gibbsite 4. अर्थोक्लेज के बढ़ते अपक्षय से बने उत्पादों के लिये कौन सा एक सही 6. इलाइट, केओलिनाइट, हेमेटाइट 7. केओलिनाइट, इलाइट, हेमेटाइट
	 3. kaolinite, illite, gibbsite 4. illite, kaolinite, gibbsite आर्थीक्लेज के बढ़ते अपक्षय से बने उत्पादों के लिये कौन सा एक सर्ह 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट
	 4. illite, kaolinite, gibbsite आर्थीक्लेज के बढ़ते अपक्षय से बने उत्पादों के लिये कौन सा एक सर्ह 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट
	आर्थोक्लेज के बढ़ते अपक्षय से बने उत्पादों के लिये कौन सा एक सर्ह 1. इलाइट, केओलिनाइट, हेमेटाइट 2. केओलिनाइट, इलाइट, हेमेटाइट
	2. केओलिनाइट, इलाइट, हेमेटाइट
	2. के ओतिनाइट, इलाइट, हेमेटाइट
	3. केओलिनाइट, इलाइट, गिब्बसाइट
A	4. इलाइट, केओलिनाइट, गिब्बसाइट
	A1: 1 1
	A2: 2 2
	A3: 3 3 A4: 4
	4
bjective Ques	stion
3 702033	Which one of the following is the slowest hillslope process?
	1. Mudflow
	2. Landslide
	3. Earthflow
	4. Solifluction

निम्न में से कौन सी सबसे धीमी पर्वत-ढाल प्रक्रिया है?

- 1. पंक प्रवाह
- 2. भू स्खलन
- 3. मृदा प्रवाह
- 4. मृदा सर्पण

A1: 1

A2: 2

2

A3: 3

.

A4: 4

Objective Question

34 702034

Which one of these statements is NOT true for 'Till'?

- 1. Transported en masse by glacier.
- May have deformation features such as folds.
- Cannot be used to infer regional ice movement.
- Are poorly sorted deposits.

निम्न कथनों में से कौन सा एक "टिल" के लिये सही नहीं है?

- 1. यह हिमनद द्वारा सामूहिक रूप से वाहित होता है।
- 2. इनमें वलन की तरह विरुपण आकृतियां हो सकती हैं।
- 3. क्षेत्रीय हिम गमन का अनुमान लगाने के लिये उपयोग नहीं कर
- 4. ये कम पृथक्कृत निक्षेप होते हैं।

A1: 1

A2: 2

2

A3: 3

3

A4: 4

1

Objective Question

The process by which sediment grains, moved by wind or water, jump or hop along the surface is known as

- 1. Deflation
- 2. Suspension
- 3. Drag
- 4. Saltation

सतह के साथ वायु अथवा जल द्वारा अवसाद कणों को स्तानांतरित व छलांगने की प्रक्रिया को____ कहते हैं।

- 1. अपस्फीति
- 2. निलंबन
- 3. कर्षण
- 4. उत्परिवर्तन

A1: 1

1

A2: 2

2

A3: 3

)

A4: 4

4

Objective Question
36 | 702036 |

Choose the correct sequence of rivers arranged in the order of increasing length.

- 1. Godavari, Kaveri, Mahanadi, Krishna
- Kaveri, Mahanadi, Krishna, Godavari
- Mahanadi, Krishna, Godavari, Kaveri
- 4. Krishna, Godavari, Kaveri, Mahanadi

लंबाई के बढ़ते क्रम के अनुसार व्यवस्थित की गई नदियों के सही विक

- 1. गोदावरी, कावेरी, महानदी, कृष्णा
- 2. कावेरी, महानदी, कृष्णा, गोदावरी
- 3. महानदी, कृष्णा, गोदावरी, कावेरी
- 4. कृष्णा, गोदावरी, कावेरी, महानदी

A1: 1

		A2: 2
		2
		A3: 3
		3 A4: 4
		4
	ective Qu	uestion
37	702037	Which of the following is NOT true in the context of El Niño?
		Weakening of the Walker circulation.
		 Surface pressure decreases at Tahiti and rainfall increases eastward over central equatorial Pacific Ocean.
		3. The surface water off Western South America is colder than normal.
		4. The Thermocline deepens in the eastern Pacific Ocean.
		El Niño के तात्पर्य में इनमें से कौन एक सही नहीं है?
		1. वॉकर परिसंचरण का कमजोर होना।
		2. ताहिती पर सतह दाब का कम होना एवं केन्द्रीय विषुवतीय प्रशांत
		ऊपर वर्षा का पूर्व की ओर बढ़ना।
		3. पश्चिमी दक्षिणी अमेरिका के परे सतह जल का सामान्य से ठंडा
		4. पूर्वी प्रशांत महासागर मे ताप-प्रवणता (थर्मीक्लाइन) का गहराना।
		A1: 1
		A2: 2
		2
		A3: 3
		3 A4: 4
		4
_	ective Qu	
38	702038	Water having total dissolved solids (TDS) in the range of $10^3-10^4 { m mg/l}$ is classified as
		1. Fresh
		2. Brackish
		3. Saline
		4. Brine
• 1		

	जल जिसमें कुल घुले पदार्थ (टोटल डीजोल्वड सोलिड: TDS) की मात्रा
	के बीच है, को निम्न में से किसमें वर्गीकृत किया जाता है?
	1. मीठा जल
	2. ब्रेकिश
	3. सैलाइन
	4. ब्राइन
	A1: 1 1
	A2: 2 2
	A3: 3 3
	A4: 4 4
Objective Qt 39 702039	
	Domestic waste water with gross faecal coliform contamination is called
	1. Grey water
	2. Black water 3. Red water
	4. Brown water
	कुल मलीय (फीकल) कोलीफार्म दूषण के साथ घरेलू जल को उ
	है।
	1. स्लेटी (ग्रे) जल
	2. स्याह (ब्लैक) जल
	3. लाल (रेंड) जल
	 लाल (रेड) जल भूरा (ब्राउन) जल

	3
A4:	4
	4

Objective Question

40 702040

If the Green, Red, NIR and SWIR bands of the LISS-III sensor were designated as 1, 2, 3 and 4, respectively, then which of the following band combinations would render a standard FCC?

- 1. $1 \rightarrow Blue, 3 \rightarrow Green, 4 \rightarrow Red$
- 2. $2 \rightarrow Blue, 3 \rightarrow Red, 4 \rightarrow Green$
- 3. $1 \rightarrow \text{Red}, 2 \rightarrow \text{Green}, 3 \rightarrow \text{Blue}$
- 4. $1 \rightarrow Blue, 2 \rightarrow Green, 3 \rightarrow Red$

यदि LISS-III संवेदक के हरे, लाल, निकट इन्फ्रारेड (NIR) एवं ल (SWIR) पिट्टयों को क्रमश: 1, 2, 3 तथा 4 से नामित किया जाता है, र पट्टी संयोजन एक मानक मिथ्या रंग सिम्मश्रण (FCC) बतायेगा?

- 1. $1 \rightarrow \text{ flmi}, 3 \rightarrow \text{ ft}, 4 \rightarrow \text{ min}$
- 2. 2 → ਜੀਕਾ, 3 → ਕਾਕ, 4 → हरा
- 3. 1 → लाल, 2 → हरा, 3 → नीला
- 4. 1 → $\overrightarrow{\text{align}}$, 2 → $\overrightarrow{\text{gt}}$, 3 → $\overrightarrow{\text{align}}$

A1: 1

1

A2: 2

A3: 3

1

A4: 4

Objective Question

41 702041

If the Earth were to orbit around the Sun at twice its present distance, without any change in its rotational velocity, then a year on it would have

- 1. 365 days
- 2. $365\sqrt{2}$ days
- 3. 730 days
- 4. 730√2 days

बिना किसी अपनी घूर्णनात्मक गति के परिवर्तन के, यदि पृथ्वी को वर दोगुनी दूरी पर सूर्य की परिक्रमा करनी हो, तब इस पर एक वर्ष ____

- 1. 365 दिन
- 2. 365√2 दिन
- 3. 730 दिन
- 4. 730√2 दिन

A1: 1

A2: 2

A3: 3

3

1т. т

Objective Question

42 702042

If the Earth were to be twice its present radius but with its density reduced to half its original value, then

- 1. its mass and gravity field would remain the same
- its mass would increase 4 times, but its gravity field would remain the same
- its mass and gravity field would increase by 4 times
- its mass would remain the same, but the gravity field would increase 4 times

यदि पृथ्वी की त्रिज्या वर्तमान से दोगुनी एवं घनत्व मूल से आधा होत

- 1. द्रव्यमान एवं गुरूत्व क्षेत्र जैसे था वैसा ही होता
- 2. द्रव्यमान चार गुना बढ़ता, परंतु गुरूत्व क्षेत्र जैसे था वैसे ही बना
- 3. द्रव्यमान एवं गुरूत्व क्षेत्र चार गुना बढ़ जाता
- 4. द्रव्यमान जैसे था वैसे ही बना रहता, परंतु गुरूत्व क्षेत्र चार गुना

A1: 1

]

A2: 2

_

3: 3

3

A4 · 4

Objective Question

43 702043

In which one of the following towns, the magnetic needle in a dip circle deviates the most from the horizontal?

- Thiruvananthapuram
- 2. Tirupati
- 3. Ujjain
- 4. Lucknow

दिये हुए में से किस एक नगर में नित वृत्त में चुंबकीय सुई क्षैतिज से अं होगी?

- 1. तिरुवनंतपुरम
- 2. तिरुपति
- 3. उज्जैन
- लखनऊ

A1: 1

1

A2: 2

2

A3: 3

A4: 4

4

Objective Question

44 702044

Compared to the epicenter of a shallow focus earthquake, the epicenter of a deep focus earthquake lies

- 1. at the same level
- deeper by not more than 30km
- deeper than 30km, but shallower than 700km
- deeper than 700km

एक उथले फोकस् भूकंप के अधिकेंद्र की अपेक्षा गभीर फोकस भूकंप क

- 1. समान स्तर पर होता है।
- 30km से ज्यादा गहरा नहीं होता है।
- 3. 30km से गहरा होता है परंतु 700km से उथला होता है।
- 4. 700km से गहरा होता है।

		A1: 1	
		1	
		A2: 2	
		2	
		A3: 3	
		3 A4: 4	
		A4: 4 4	
Obj	ective Qu		
	702045		
		Whic	h among the following seismic phases is never a first arrival?
		1.	Pg P'
			PmP
			Pn
		इन	भूकंपीय कलाओं में से किसका प्रथम आगमन कभी भी नहीं होता
		1.	Pg
		2.	P*
		3.	PmP
		4.	Pn
		A1: 1	
		A2: 2	
		2	
		A3: 3	
		3	
		A4: 4	
Ohi	ective Qu		
	702046		
		For an	n earthquake
		1.	The magnitude and intensity decrease with epicentral distance
			The magnitude and intensity increase with epicentral distance
			The magnitude remains unchanged and intensity decreases with
			epicentral distance The magnitude decreases with epicentral distance and intensity remains
			constant

एक भूकंप के लिए

- 1. अधिकेंद्री दूरी के साथ परिमाण एवं प्रबलता घटते हैं।
- 2. अधिकेंद्री दूरी के साथ परिमाण एवं प्रबलता बढ़ते हैं।
- अधिकेंद्री दूरी के साथ प्रबलता घटती है परंतु परिमाण जैसे था है
 है।
- 4. अधिकेंद्री दूरी के साथ परिमाण घटता है और प्रबलता स्थिर रहतं

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

47 702047

If the Earth starts rotating in opposite direction on its axis with the same period of rotation, then how will the length of day and night be affected at a particular place on the Earth's surface (say Delhi)?

- 1. Length of the day becomes longer but night shorter
- Length of the night becomes longer but day shorter
- 3. There will be no significant change in the length of day and night
- Lengths of the day and night both become shorter significantly

यदि पृथ्वी इसी समान घूर्णन की अवधि से अपने अक्ष पर उल्टी दिशा लगे, तब पृथ्वी के किसी स्थान पर (मान लें दिल्ली) दिन एवं रात्रि की प्रभाव पड़ेगा?

- 1. दिन की अवधि लंबी परन्तु रात्रि छोटी होगी
- 2. रात्रि की अवधि लंबी परन्तु दिन छोटी होगी
- 3. दिन एवं रात्रि की अवधि पर कोई प्रभाव नहीं पड़ेगा
- 4. दिन एवं रात्रि दोनों की अवधि महत्वपूर्ण ढंग से छोटी हो जायेंगी

A1: 1

A2: 2

2

A3: 3

	3 A4: 4
	4
Objective Q	uestion
48 702048	A cuboidal rock sample is subjected to purely shear stresses. Assuming an elastic regime, the change in volume of the rock sample is
	 zero. proportional to bulk modulus. proportional to Young's modulus. proportional to Shear modulus.
	एक घनाकार शैल नमूने को विशुद्ध रूप से अपरूपण तनाव के अधीन
	लें कि तन्य व्यवस्था है तब शैल नमूने का आयतन बदलाव
	1. शून्य होगा
	2. आयतन मापांक के आनुपातिक होगा
	3. यंग मापांक के आनुपातिक होगा
	4. अपरूपण मापांक के आनुपातिक होगा
	A1: 1
	1 A2: 2
	2 A3: 3 3
	A4: 4 4
Objective Q	uestion
49 702049	Which one of the following radioisotopes has the highest half life?
	1. ²³² Th 2. ²³⁵ U
	2. ²³⁵ U 3. ²³⁸ U
	4. ²³⁴ Th
	निम्नितिखित में से किस एक रेडियोधर्मी समस्थानिक की अर्ध-आयु स
	1. ²³² Th
	2. ²³⁵ U
	3. ²³⁸ U
	4. ²³⁴ Th

		A1: 1
		1 A2: 2
		2
		A3: 3
		3 A4: 4
		4
	ective Qu	estion
50	702050	Sphalerite is a major source of
		1. Zinc.
		2. Copper.
		3. Aluminium.
		4. Iron.
		स्फैलेराइट का एक प्रमुख स्त्रोत है।
		1. जस्ता (जिंक)
		2. तांबा (कॉपर)
		3. एल्यूमिनीयम
		4. लौह (आयरन)
		A1: 1
		1 A2: 2
		2
		A3: 3
		3 A4: 4
		4
	ective Qu 702051	estion
51	/02051	Which of the following is a FALSE statement about subtropical jet stream?
		1. They form over subtropical high-pressure system at a height of about 12
		km.
		 They satisfy geostrophic balance. They are westerly winds.
		 They are westerly winds. They are stronger in the winter hemisphere as compared to the summer hemisphere.

उपोष्णकटिबंधीय जेट प्रवाह के लिये इनमें से कौन सा कथन गलत है।

- ये उपोष्णकि दिबंधीय उच्च दाब व्यवस्था के ऊपर लगभग 12 km । बनते हैं।
- 2. ये भूविक्षेपी संत्लन को संत्ष्ट करते हैं।
- 3. ये पश्चिम से बहने वाली हवायें होती है।
- 4. ये ग्रीष्मकालीन गोलार्द्ध की तुलना मे शीतकालीन गोलार्द्ध में मजब

A4: 4

Objective Question

52 702052

Planetary Albedo depends on

- 1. Amount of solar radiation reflected back to space by atmosphere
- 2. Amount of solar radiation reflected back to space by land surface of Earth
- Amount of solar radiation reflected back to space by ocean surface
- Amount of solar radiation reflected back to space by atmosphere, oceans and land

ग्रहीय श्विती किस पर निर्भर होती है?

- 1. वायुमंडल द्वारा आकाश की तरफ परावर्तित सौर्य विकिरण की म
- 2. पृथ्वी की भूमि सतह द्वारा आकाश की तरफ परावर्तित सौर्य विर्ा
- 3. सम्द्र सतह द्वारा आकाश की तरफ परावर्तित सौर्य विकिरण की
- वायुमंडल, समुद्र एवं भूमि द्वारा आकाश की तरफ परावर्तित सौर मात्रा

A1: 1

A2: 2

2

A3: 3

A4: 4

	4				
Objective Qu	estion				
53 702053	Scale height is the vertical distance over which the reference pressure changes				
	to	of its original value.			
	1.	1			
	3 1	, ,			
	2. 3. 1/4 1/4.	, 1			
	4.	[e			
	मान	क उच्चता (स्केल हाव	रट)	वह उध्वीधर दूरी होती है	जिस पर संदर्भ
				N .	י וסונו ול נוסף
	उसवे	न मूल मान का	- 2	हो जाता है।	
	1.	e			
	2.	\sqrt{e}			
	3. 4.	$\frac{1}{a}$			
	_	1			
	4.	\sqrt{e}			
	A1: 1				
	1				
	A2: 2 2				
	A3: 3				
	3				
	A4: 4				
	4				
Objective Qu 54 702054					
	Match	the column I and column II assu	uming	standard notations	
		Column I: Name of wave	Col	lumn II: Expression for wave speed	
	Α	Sound wave	Р	(gH) ^{1/2}	
	В	Shallow water gravity wave	Q	$-\beta/(k^2 + l^2)$	
	C	Barotrophic Rossby wave	R	(C _p RT/ C _v) ^{1/2}	
		se the correct option			
		A-R; B-Q; C-P			
		4-P; B-Q; C-R 4-Q; B-P; C-R			
		4-R; B-P; C-Q			
	,	(11, D1, OQ			

मानक संकेतन को मानते हुए कॉलम-। का कॉलम -।। के साथ मिलान व

	3			
कॉलम I: तरंग का नाम		कॉलम II: तरंग गति की अभिव्य		
Α	ध्वनि तरंग	Р	(gH) ^{1/2}	
В	उथला जल गुरुत्व तरंग	Q	$-\beta/(k^2 + l^2)$	
С	दाबघनत्वीय रॉस्बी	R	(C _p RT/ C _v) ^{1/2}	
	तरंग			

सही विकल्प को चुनें।

- 1. A-R; B-Q; C-P
- 2. A-P; B-Q; C-R
- 3. A-Q; B-P; C-R
- 4. A-R; B-P; C-Q

A1: 1

1

A2: 2

.

A3: 3

A4: 4

Objective Question

55 702055

Mass of water vapor per unit mass of dry air is called

- 1. Specific humidity
- Mixing ratio
- 3. Relative humidity
- 4. Vapor pressure

जल वाष्प का द्रव्यमान प्रति इकाई शुष्क वायु द्रव्यमान ____ कह

- 1. विशिष्ट आर्द्रता
- 2. मिश्रण अनुपात
- 3. सापेक्ष आर्द्रता
- 4. वाष्प दाब

A1: 1

1

A2: 2

	\parallel 2
	A3: 3
	3
	A4: 4
	4
	e Question
56 7020	The horizontal wind in small-scale vortices such as tornadoes follows
	Geostrophic wind balance
	Cyclostrophic wind balance
	3. Inertial wind balance
	4. Gradient wind balance
	लघु-पैमाने के भंवरों में क्षैतिज वायु, जैसे कि टोरनेडो में, अनुस
	1. भूविक्षेपी वायु संतुलन
	2. चक्रगतिक वायु संतुलन
	3. जड़त्व वायु संतुलन
	4. प्रवणता वायु संतुलन
	A1: 1
	1
	A2: 2
	2
	A3: 3
	3 A4: 4
	4
Objective	e Question
57 7020	
	If ρ_{PARCEL} , PPARCEL, TPARCEL and ρ_{ENV} , PENV, TENV are the density, pressure and temperatures of any air parcel and its surrounding environment, respectively, when will the air parcel have a positive buoyancy?
	1. $\rho_{PARCEL} < \rho_{ENV}$
	2. $\rho_{PARCEL} > \rho_{ENV}$
	3. TPARCEL < TENV
	4. PPARCEL > PENV
II II	

यदि ho_{PARCEL} , PPARCEL, TPARCEL एवं ho_{ENV} , PENV, TENV वायु खंड (PARC के वातावरण (ENV) के क्रमश: घनत्व, दाब एवं तापमान हैं। वाय् खंड र उत्प्लावन होगा?

- 1. $\rho_{PARCEL} < \rho_{ENV}$
- $\rho_{PARCEL} > \rho_{ENV}$
- 3. TPARCEL < TENV
- PPARCEL > PENV 4.
- A1: 1
- A2: 2

3

- A3: 3
- A4: 4

Objective Question

58 702058

In an urban polluted atmosphere, during what time of the day will the surface ozone concentration be the highest?

- 5 AM to 7 AM
- 2 PM to 4 PM
- 6 PM to 8 PM
- 9 AM to 11 AM

एक प्रदूशित शहरी वाय्मंडल में सतह ओज़ोन सांद्रता दिन में किस समय

- 1. 5 AM to 7 AM
- 2 PM to 4 PM
- 6 PM to 8 PM
- 9 AM to 11 AM 4.
- A1: 1
- A2: 2
 - 2
- A3: 3
- A4: 4

LCL, EL and LFC stands for Lifting Condensation Level, Equilibrium Level and Level of Free Convection. Which of the following situations is not possible in our earth's atmosphere? LCL = 900hPa, EL = 400hPa, LFC = 850hPaLCL = 850hPa, EL = 300hPa, LFC = 800hPaLCL = 800hPa, EL = 400hPa, LFC = 900hPaLCL = 900hPa, EL = 450hPa, LFC = 800hPaLCL, EL तथा LFC क्रमश: उत्तोलक संघनन स्तर, संत्लन स्तर, एवं म स्तर हैं। पृथ्वी के वाय्मंडल में इनमें से कौन सी परिस्थिति संभव नहीं 1. LCL = 900hPa, EL = 400hPa, LFC = 850hPaLCL = 850hPa, EL = 300hPa, LFC = 800hPa3. LCL = 800hPa, EL = 400hPa, LFC = 900hPaLCL = 900hPa, EL = 450hPa, LFC = 800hPa4. A1: 1 A2: 2 2 A3: 3 $A4 \cdot 4$ Objective Question 702060 Ekman layer in the atmosphere has the following three-way force balance between Pressure gradient force, Coriolis force and centrifugal force 1. Pressure gradient force, Coriolis force and turbulent drag force Pressure gradient force, centrifugal force and turbulent drag force Coriolis force, centrifugal force and turbulent drag force वाय्मंडल के एक्मन् परत में त्रि बल संत्लन ____ के बीच होता है। दाब प्रवणता बल, कोरियोलिस बल तथा अपकेंद्री बल 1. दाब प्रवणता बल, कोरियोलिस बल तथा प्रक्ष्डध कर्षण बल 2. दाब प्रवणता बल, अपकेंद्री बल तथा प्रक्ष्डध कर्षण बल कोरियोलिस बल, अपकेंद्री बल तथा प्रक्ष्डध कर्षण बल

A1: 1

A2: 2

		2
	A3:	3
		3
	A4:	4
		4

61 702061

The hypsometric curve of the earth's surface is shown. The area of the ocean floor covered above the carbonate compensation depth of 3250 m is

- 1. 20%
- 2. 50%
- 3. 29%
- 4. 40%

पृथ्वी के सतह का उच्चतादर्शी वक्र दिखाया गया है। 3250 m के व गभीरता के ऊपर का घेरा गया सागर तल का क्षेत्रफल _____ है। (। सापेक्ष ऊंचाई; Percentage of area: प्रतिशत क्षेत्रफल)

- 1. 20%
- 2. 50%
- 3. 29%
- 4. 40%

A1: 1

. _

A2:

2

A3: 3

A4: 4

...

Objective Question

North Pacific deep water has higher nutrient content, higher ΣCO_2 and lower dissolved O_2 than that in the North Atlantic because

- 1. it is the farthest along deep circulation path.
- of existence of more volcanoes along the margins of Pacific.
- 3. of larger area of the Pacific Ocean.
- 4. of deeper water depths of the Pacific Ocean.

उत्तरी प्रशांत महासागर के गभीर जल में उत्तरी अटलांटिक महासागर की अपेक्षा उच्च पोषक तत्व मात्रा, उच्च ΣCO2 और लघु घुला O2 किर

- 1. यह गभीर परिसंचरण पथ के अन्दिश अति दूर है
- 2. प्रशांत महासागर के तटों के अन्दिश अधिक ज्वालाम्खीयों का हो
- प्रशांत महासागर का बड़ा क्षेत्रफल
- 4. प्रशांत महासागर के जल की अधिक गभीरता

A1: 1

A2: 2

A2: 2

A3: 3

3

A4: 4

Objective Question

63 702063

The solubility of biogenic silica in seawater

- decreases with temperature and salinity
- 2. increases with temperature and salinity
- 3. decreases with temperature and increases with salinity
- 4. increases with temperature and decreases with salinity

समुद्र जल में जैव-जनित सिलिका की घुलनशीलता

- 1. तापमान एवं लवणता के साथ घटती है
- 2. तापमान एवं लवणता के साथ बढ़ती है
- 3. तापमान के साथ घटती एवं लवणता के साथ बढ़ती है
- 4. तापमान के साथ बढ़ती एवं लवणता के साथ घटती है

A1: 1

1

	A2: 2
	2
	A3: 3
	3
	A4: 4
	4
Objec	ive Question
64 7	22064
	Which one of the following shows an ascending order of mixed layer depth in the oceanic regions?
	1. Subtropical Pacific Ocean, Bay of Bengal, Polar oceanic region
	2. Polar oceanic region, Subtropical Pacific Ocean, Bay of Bengal
	3. Bay of Bengal, Polar oceanic region, Subtropical Pacific Ocean
	4. Bay of Bengal, Subtropical Pacific Ocean, Polar oceanic region
	समुद्री क्षेत्रों में मिश्रित परत गभीरता के बढ़ते हुए क्रम में कौन सा दिर
	सही है?
	1. उपोष्णकटिबंधीय प्रशांत महासागर, बंगाल की खाड़ी, ध्रुवीय सागर
	2. ध्रुवीय सागर क्षेत्र, उपोष्णकटिबंधीय प्रशांत महासागर, बंगाल की र
	3. बंगाल की खाड़ी, ध्रुवीय सागर क्षेत्र, उपोष्णकटिबंधीय प्रशांत महासा
	4. बंगाल की खाड़ी, उपोष्णकटिबंधीय प्रशांत महासागर, ध्रुवीय सागर ह
	A1: 1
	A2: 2
	A3: 3
	A4: 4
	4
	ive Question Property Propert
65 7	In which of the following oceanic zones, the highest sediment deposition takes place?
	1. Continental rise
	2. Continental slope
	3. Shelf break
	4. Mid-oceanic ridge
	in this section rage

किस सागरीय क्षेत्र में सर्वाधिक अवसाद निक्षेपण होता है?

- 1. महाद्वीपीय उत्थान
- 2. महाद्वीपीय ढाल
- 3. शेल्फ ब्रेक
- 4. मध्य महासागरीय कटक

A1: 1

A2: 2

2

A3: 3

A4: 4

14: 4

Objective Question

66 702066

Which one of the following defines steady state of materials in ocean?

- 1. inputs from rivers equal the particle flux out of the euphotic zone.
- concentration does not change with time.
- the removal flux must be proportional to the original amount.
- the river input equals the atmospheric input.

सागर के पदार्थों के अविचल अवस्था के लिये इनमें से कौन एक परिभ

- निदयों द्वारा निवेश एवं सुप्रकाशी क्षेत्र से बाहर नीचे की ओर व बराबर होना।
- 2. समय के साथ सांद्रता का परिवर्तन नहीं होना।
- 3. निष्कासन अभिवाह, मूल मात्रा के अनुपाती होना चाहिये।
- 4. निदयों का निवेश एवं वायुमंडलीय निवेश का बराबर होना।

A1: 1

A2: 2

2

A3: 3

A4: 4

67 702067

The pH of the ocean water and river is 8 and 4, respectively. What would be the dominant dissolved inorganic carbon species in the ocean and river, respectively?

- 1. [CO₂], [CO₃²-]
- 2. [HCO₃-], [CO₃²-]
- 3. [HCO₃-], [CO₂]
- 4. [CO₂], [HCO₃-]

सागर एवं नदी के जल pH क्रमश: 8 एवं 4 हैं। सागर एवं नदी जल में प्रकार के घुले हुए अकार्बनिक कार्बन होंगें?

- 1. [CO₂], [CO₃²-]
- 2. [HCO₃-], [CO₃²-]
- 3. [HCO₃-], [CO₂]
- 4. [CO₂], [HCO₃-]

A1: 1

A2: 2

A3: 3

3

A4: 4

4

Objective Question

68 702068

At a depth of 900 mm in a sedimentary core the ¹⁴C activity is 1/16th of the surface activity. What is the average sedimentation rate (given ¹⁴C half-life = 6000 years)?

- 1. 0.05 mm/year
- 0.01875 mm/year
- 3. 0.0035 mm/year
- 4. 0.0375 mm/year

एक अवसादी क्रोण में 900 mm की गहराई पर 14C की सक्रियता सतह 1/16 है। औसत अवसादन दर क्या है? (14C की अर्ध आयु 6000 वर्ष है)

- 1. 0.05 mm/year
- 0.01875 mm/year
- 3. 0.0035 mm/year
- 4. 0.0375 mm/year

A1: 1

1

I		A2: 2
		2
		A3: 3
		3
		A4: 4
		4
Ohi	jective Qu	·
69	702069	COLUMN
		With increasing climate warming, the open ocean regions are expected to become
		eutrophic due to higher organic matter degradation at the surface
		oligotrophic due to higher consumption of nutrients by plankton due to increasing temperature
		eutrophic due to higher entrainment and mixing
		oligotrophic due to higher thermal stratification and reduced mixing
		э э э э э э э э э э э э э э э э э э э
		जलवायु तापन के बढ़ने से उन्मुक्त महासागर क्षेत्र
		1. सतह पर कार्बनिक पदार्थ के उच्च निम्नन के कारण सुपोषणी हं
		2. बढ़ते तापमान के कारण प्लवकों द्वारा पोषक तत्वों के अधिक उ
		मितपोषणी हो जाता है
		3. उच्च संरोहण एवं मिश्रण से सुपोषणी हो जाता है
		4. उच्च तापीय संस्तरण एवं कम मिश्रण से मितपोषणी हो जाता है
		A1: 1
		1
		A2: 2
		2
		A3: 3
		3
		A4: 4
		4
	jective Qu	estion
70	702070	The term "mineralization" in marine carbon cycle refers to the process where
		elements that have passed through the food web are recycled.
		2. inorganic minerals are formed biologically.
		3. inorganic minerals are incorporated into the food chain.
		 dissolution of biologically formed minerals at the sediment-water interface.

समुद्री कार्बन चक्रण में "खनिजीकरण" दिए हुए में से किस को इंगित क वह तत्व जो खाद्य जाल के द्वारा गुजरे हों उनका पुन: चक्रण ह जैविक प्रक्रिया से अकार्बनिक खनिज बनते हैं खाद्य शृंखला में अकार्बनिक खनिजों का समावेशन होता है अवसाद-जल अंतरापृष्ट पर जैविक प्रक्रिया से बने खनिजों का वि A1: 1 A2: 2 A3: 3 A4: 4 Objective Question 71 702071 A dipping tabular ore body has a thickness of 24 m as measured in a vertical drill hole. If the true thickness of the ore body is 12 m, the dip of the ore body _degrees. 1. 2. 3. 90 एक उध्वीधर वेधनी छिद्र में मापा गया एक नतियुक्त अयस्क खंड परत m है। यदि अयस्क खंड की वास्तविक मोटाई 12 m है, तब अयस्क ख डिग्री होगी। 30 1. 60 3. 90 45 4. A2: 2

A3: 3

	A4: 4 4
Objective Or	<u> </u>
Objective Qu 72 702072	A basaltic melt with Sr=300 ppm mixes with a granitic melt having Sr=150 ppm. If the hybrid melt has Sr=200 ppm, what will be the fraction of the basaltic melt in the hybrid liquid? 1. 0.67 2. 0.50 3. 0.75 4. 0.33 एक Sr=300 ppm वाले गलित बैसाल्ट का Sr=150 ppm वाले गलित व मिश्रण होता है। यदि गलित मिश्रण में Sr=200 ppm है तब मिश्रित द्र बैसाल्ट का कितना अंश होगा? 1. 0.67 2. 0.50 3. 0.75 4. 0.33 A1: 1 1 A2: 2 2 A3: 3 3 A4: 4
Objective Qu	lestion
73 702073	

यदि कोन्ड्राइटिक समरूप भंडार (CHUR) का वर्तमान ¹⁴³Nd/¹⁴⁴Nd ए क्रमश: 0.512638 एवं 0.1967 है, तब 2.5 Ga पर इसका ¹⁴³Nd/¹⁴⁴N होगा। (दिया गया: ¹⁴⁷Sm का क्षय स्थिरांक = 6.54 x 10⁻¹² y⁻¹)

- 1. 0.515892
- 2. 0.501110
- 3. 0.509396
- 4. 0.499260
- A1: 1
 - 1
- A2: 2
 - 2
- A3: 3
- A4: 4
 - Δ

Objective Question

74 702074

A mantle peridotite having 60% olivine, 30% clinopyroxene and 10% garnet undergoes equilibrium partial melting to produce a basaltic melt. If the fraction of melt produced is 10% of the original rock by weight, then what would the approximate concentration of La in the melt? Given that the concentration of La in the peridotite is 10 ppm and the mineral-melt partition coefficients (K_d) for olivine, clinopyroxene and garnet, respectively, are: 0.0002,0.029 and 0.0014.

- 1. 596 ppm
- 2. 59.6 ppm
- 3. 5.96 ppm
- 4. 0.596 ppm

एक बैसाल्ट गितित के उत्पादन के लिए एक प्रावार पेरिडोटाइट का साम् हो रहा है, जिसमें 60% ऑलिविन, 30% क्लायनोपायरॉक्सिन एवं 10% उत्पाद गितित मूल शैल का 10% (भार में) है, तब गितित में La की कितनी होगी? दिया गया है की पेरिडोटाइट में La 10 ppm क्लायनोपायरॉक्सिन एवं गार्नेट के वितरण गुणांक (Kd) क्रमशः 0.00 0.0014 हैं।

- 1. 596 ppm
- 2. 59.6 ppm
- 3. 5.96 ppm
- 4. 0.596 ppm

A1: 1 A2: 2 2 A3: 3 3 A4: 4

Objective Question

75 702075

What is the total Fe (wt%), approximately, in a garnet having $FeO = 21.36 \, wt\%$ and $Fe_2O_3 = 1.96 \, wt\%$? (Given atomic weight of Fe = 56 amu and O= 16 amu)

- 1. 16
- 2. 18
- 3. 20
- 4 24

एक गारनेट में $FeO=21.36\,wt\%$ एवं $Fe_2O_3=1.96$ भार % हैं, इसमें लगभग कितना होगा? (दिए गए अणु भार Fe=56 amu तथा O=16 ϵ

- 1. 16
- 2. 18
- 3. 20
- 4. 24

A1: 1 1 A2: 2

II		
		A3: 3
		A4: 4
		4
	ective Qu	estion
76	702076	If the densities of freshwater and saltwater are 1000 kg/m³ and 1020 kg/m³ respectively, and the water table is at 2 m above sea level, then the freshwater-saltwater interface will be found at a depth ofm.
		1. 100 m 2. 10 m 3. 80 m 4. 8 m
		यदि मीठे जल एवं लवण जल का घनत्व क्रमश: 1000 kg/m³ and 10:
		भौम जल स्तर समुद्र सतह के ऊपर 2 m पर है, तब मीठे जल एवं
		अंतरापृष्ठm गहराई पर होगा।
		1. 100 m 2. 10 m 3. 80 m 4. 8 m
		A1: 1 1 A2: 2 2 A3: 3 3 A4: 4 4
Obj	702077	
		The Clapeyron equation gives a negative $\frac{dP}{dT}$ value for H ₂ O-saturated melting of
		albite at low pressure conditions $[H_2O_{vap} + \text{albite} \rightarrow \text{liquid}_{aq}]$. This is due to
		 large negative volume change associated with the reaction large negative entropy change associated with the reaction
		large negative change in both volume and entropy of the reaction
		4. large positive volume change associated with the reaction

कम दाब अवस्था में एल्बाइट के H_2O -संतृप्त गलन $[H_2O_{\text{वाष्प}} + \text{एल्बा}]$ के लिए क्लेपेरॉन समीकरण $\frac{dP}{dT}$ का ऋणात्मक मान देता है। यह कि है?

- 1. अभिक्रिया के साथ संबंधित विशाल ऋणात्मक आयतन परिवर्तन
- 2. अभिक्रिया के साथ संबंधित विशाल ऋणात्मक एंट्रापी परिवर्तन
- 3. अभिक्रिया के आयतन एवं एंट्रापी, दोनों में विशाल ऋणात्मक पी
- 4. अभिक्रिया के साथ संबंधित विशाल धनात्मक आयतन परिवर्तन

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

78 702078

In the given isobaric T-X phase diagram of olivine system at 1 atm pressure, a melt of composition 'A' starts cooling from a temperature of 1900°C. Assuming equilibrium crystallization to occur during the cooling process, how much melt (in %) will remain in the system at 1700°C?

1.66.7

2.33.3

3.20

4.75

दिया गया समदाब T-X प्रावस्था चित्र, 1 atm दाब पर ओलिवीन प्रणाली को दिखाता है। जिसमें 'A' संगठन का एक गलित 1900°C से शीतलन की शुरूआत करता है। मान लें कि शीतलन प्रक्रिया में साम्यावस्था क्रिस्टलीकरण होता है, 1700°C पर इस प्रणाली में कितना गलित (% में) शेष रहेगा?

(Temperature – तापमान; wt % - भार %; liquid – द्रव; Solidus – सालिडस; liquids-लिक्विडस्; Olivine-ओलिविन - ; fayalite – फायालाइट; forsterite – फोर्स्टराइट)

- 1.66.7
- 2.33.3
- 3.20
- 4.75

A1: 1

1

A2: 2

2

A3: 3

A4: 4

4

Objective Question

79 702079

Which one of the following pairs contains folds that CANNOT be uniquely differentiated from each other only by the plunge of their hinge lines?

- 1. A vertical fold and an upright fold
- A moderately plunging fold and a vertical fold
- 3. A recumbent fold and a vertical fold
- A reclined fold and a recumbent fold

इनमें से कौनसे एक जोड़े के वलनों को केवल उनके हिंज (कब्जा) रेखाके विशिष्ट रूप से एक दूसरे से विभेदित नहीं किया जा सकता?

- 1. वर्टिकल एवं अपराइट वलन
- 2. साधारणतः अवनमनी वलन एवं वर्टिकल वलन
- 3. शयान वलन एवं वर्टिकल वलन
- 4. अवनत वलन एवं शयान वलन

Objective Question

80 702080

Consider the given ridge-ridge (RRR) triple junction between plates A, B and C, and the relative vector velocities V_{BA} , V_{CB} , and V_{AC} between them. If V_{BA} has azimuth 90° and magnitude 100 mm/y, V_{CB} has azimuth 200° and magnitude 80 mm/y, what will be the magnitude of V_{AC} ?

- 1. 90.4 mm/y
- 2. 104.5 mm/y
- 3. 318.7 mm/y
- 4. 212.3 mm/y

दिए गए A, B तथा C प्लेटों के बीच कटक-कटक (RRR) त्रि-संधि स्थल एवं उनके बची सापेक्ष सिदश गितयों V_{BA} , V_{CB} , तथा V_{AC} , पर विचार करें। यदि V_{BA} का दिगंश 90° एवं परिमाण 100 mm/y, V_{CB} का दिगंश 200° एवं परिमाण 80 mm/y है, तब V_{AC} का परिमाण कितना होगा?

- 1. 90.4 mm/y
- 2. 104.5 mm/y
- 3. 318.7 mm/y
- 4. 212.3 mm/y

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

81 702081

Consider the following sedimentary structures:

- a. Ripple
- b. Gutter
- c. Antidune
- d. Dune

What is the correct order of increasing velocity with constant grain-size?

- 1. b, c, d, a
- 2. a, d, c, b
- 3. a, c, b, d
- 4. b, d, a, c

निम्न अवसादी आकृतियों पर विचार करें: उर्मिका गटर b. प्रतिटिब्बा C. टिब्बा d. इनमें स्थिर कण आकार के साथ बढ़ते गति के लिये कौन सा सही अन्क्रम है? 1. b, c, d, a 2. a, d, c, b 3. a, c, b, d b, d, a, c A1: 1 A2: 2 A3: 3 3 A4: 4 Objective Question 82 702082 Base-level rise is NOT associated with which one of the following sequence stratigraphic surfaces? Maximum regressive surface 2. Regressive surface of marine erosion 3. Ravinement surface (transgressive) Maximum flooding surface इनमें से कौन सा एक अनुक्रम स्तरिक सतह, आधार-स्तर उत्थान के साथ संबंधित नहीं है? महत्तम प्रतिक्रामी सतह 1. 2. सम्द्री अपरदन का प्रतिक्रामी सतह खड्ड बनने का सतह (अतिक्रामी) 3. 4. महत्तम बाढ़ का सतह A1: 1 A2: 2 A3: 3 A4: 4

Objective Question

The placer diamond is present within

- Kajrahat Limestone
- 2. Lower Rewa Sandstone
- Upper Bhander Sandstone
- 4. Rohtas Limestone

प्लेसर हीरक _____ में उपस्थित हैं।

- 1. कजराहट चूनापत्थर
- 2. लोअर रेवा बालूपत्थर
- 3. अपर भांडेर बालूपत्थर
- 4. रोहतास चूनापत्थर

A1: 1

A2: 2

2

A3: 3

.

A4: 4

4

84 702084

Objective Question

Which one of the following strain geometry patterns would correspond to a flexural flow fold?

- 1. Highest strain in the hinge zone
- 2. Uniform strain throughout the fold train
- 3. Lowest strain in the hinge zone
- 4. No strain in the fold train

इनमें से कौन सी विकृति ज्यामिति अभिरचनायें आनमन प्रवाह वलन के अनुरूप होती हैं?

- 1. हिंज क्षेत्र में उच्चतम विकृति
- 2. वलन शृंखला (ट्रेन) में सर्वत्र समान विकृति
- 3. हिंज क्षेत्र में न्यूनतम विकृति
- 4. वलन शृंखला में कोई विकृति नहीं

A1: 1

]

A2: 2

,

A3: 3

3

A4: 4

85 702085

The facial suture which is NOT present along the ventral margin of cephalon of Trilobite is known as:

- 1. Proparian
- 2. Hypoparian
- 3. Gonatoparian
- 4. Opisthoparian

ट्राइलोबाइट के शीर्ष के अधर सीमा के अनुदिश कौन सा आनन सिवन मौजूद नहीं होता है?

- 1 प्रोपैरियन
- 2. हाइपोपैरियन
- गोनैटोपैरियन
- ओपिस्थोपैरियन

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

86 702086

Which one of the following statements is NOT true for Algoma-type banded iron formation?

- 1. They did not form at shallow continental shelves.
- They formed laterally extensive units.
- 3. They are associated with submarine volcanic sequences.
- 4. They are occasionally associated with VMS deposits.

इनमें से कौन सा एक कथन अल्गोमा वर्ग के पट्टी लौह शैल समूह के लिए सही **नहीं** है?

- 1. वे उथले महाद्वीपीय उपतटों पर नहीं बनते हैं।
- 2. वे पार्श्ववत व्यापक इकाइंयां बनाते हैं।
- 3. वे अन्त:समुद्री ज्वालामुखीय अनुक्रम के साथ संबंद्ध होते हैं।
- 4. वे अनियमित ढ़ंग से वी एम एस (VMS) निक्षेपों के साथ संबंदध होते हैं।

A1: 1

1

A2: 2

2

		A3: 3
		3
		A4: 4
Obi	ective Qu	4 Lestion
	702087	250 B.M. 500(\$80) GB B.B. 1900 ME 8800 (\$50 \$10) M. 250 (\$10) GB MAD 100 (\$10)
		Arrange the following types of volcanic eruptions in order of their increasing explosivity.
		A. Strombolian
		B. Plinian C. Vulcanian
		D. Hawaiian
		Choose the correct option
		1. A, D, B, C
		2. D, B, C, A
		3. C, B, A, D 4. D, A, B, C
		दिए गए ज्वालामुखीय प्रस्फुटन को उनकी बढ़ती विस्फोटकता के साथ अनुक्रमित करें।
		A. स्ट्रोम्बोलियन
		B. प्लिनीयन
		C. वल्कैनीयन
		D. हवाईयन
		सही विकल्प चुनें।
		1. A, D, B, C
		2. D, B, C, A
		3. C, B, A, D
		4. D, A, B, C
		A1: 1
		A2 : 2 2
		A3: 3
		3
		A4: 4
		4
Obj 88	ective Qu 702088	
		Identify the CORRECT pair
		Unconsolidated bank sediments → narrow, deep channel
		2. Consolidated bank sediments → wide, shallow channel
		 Unconsolidated bank sediments → high silt-clay ratio Consolidated bank sediments → low channel width-depth ratio
		Concentration built ocumento priori charmer man appriratio

सही युग्म को पहचानें

- 1. असमेकित तट अवसाद → पतली, गहरी वाहिका
- 2. समेकित तट अवसाद → चौड़ी, उथली वाहिका
- 3. असमेकित तट अवसाद → उच्च गाद (सिल्ट) मृतिका (क्ले) अनुपात
- 4. समेकित तट अवसाद → निम्न वाहिका चौड़ाई गहराई अन्पात

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

89 702089

Match the types of soil in Column I with corresponding properties in column II

Column I		Column II		
Α.	Entisols	P.	acidic soils in humid areas	
B.	Mollisols	Q.	high content of expandable clay minerals	
C.	Vertisols	R.	recently formed soil	
D.	Ultisols	S.	base rich with high organic matter	

Choose the correct option.

- 1. A-S, B-Q, C-R, D-P
- 2. A-R, B-S, C-Q, D-P
- 3. A-R, B-P, C-S, D-Q
- 4. A-P, B-S, C-Q, D-R

कॉलम । में मृदा का कॉलम ॥ में उनकी विशेषता के साथ सही मिलान करें

कॉलम	1	कॉलग	म <mark>॥</mark>
Α.	एन्टीसॉल	P.	आर्द्र क्षेत्रों में अम्लीय मृदा
B.	मोलीसाल	Q.	अधिक मात्रा में विस्तारवाली मृत्तिका खनिजें
C.	वर्टीसॉल	R.	नूतनकाल में बनी मृदायें
D.	अल्टीसॉल	S.	क्षार प्रचुर के साथ उच्च कार्बनिक पदार्थ

सही विकल्प च्नें।

- 1. A-S, B-Q, C-R, D-P
- 2. A-R, B-S, C-Q, D-P
- 3. A-R, B-P, C-S, D-Q
- A-P, B-S, C-Q, D-R

A1: 1

1

A2: 2

	1 1	
		A3: 3 3
		A4: 4
		4
Obio	ective Qu	
_	702090	
		Arrange the following dune types in relation to increasing sand supply and wind direction variability.
		A. Linear dunes
		B. Transverse dunes
		C. Barchan
		D. Star dunes
		Choose the correct option
		1. C, B, A, D
		2. B, C, D, A
		3. A, B, C, D
		4. D, A, B, C
		दिए गए टिब्बों के प्रकारों को बढ़ते बालू की आपूर्ति एवं पवन दिशा में परिवर्तनशीलता
		के आधार पर व्यवस्थित करें
		A. रेखीय टिब्बे
		B. अनुप्रस्थ टिब्बे
		C. बारखान (चापाकार टिब्बे)
		D. तारा टिब्बे
		सही विकल्प चुनें
		1. C, B, A, D
		2. B, C, D, A
		3. A, B, C, D
		4. D, A, B, C
		4. <i>D</i> , A, B, C
		A1: 1
		1
		A2: 2
		A3: 3 3
		A4: 4
		4
Obje	ective Qu	
	702091	TOTAL SECTION AND SECTION AND ADMINISTRATION OF THE SECTION AND ADMINISTRATION AND ADMINISTRATION ADMINISTRAT
		Identify the INCORRECT pair

- 1. 2. 3. 4.

- Isovels velocity
 Riffles meander bends
 Ripples sand bedforms
 Thalweg deepest part of a channel

गलत युग्म को पहचानें

- 1. आइसोवेल्स गति
- 2. अवखातिका विसर्प घुमाव
- 3. अर्मिका बालू संस्तर निर्माण
- 4. घाटी रेखा (थालवेग) वाहिका का सबसे गहरा भाग

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

_

Objective Question

92 702092

Consider the following statements on the tidal flooding in an estuary

- A. It turns the estuary into a sedimentary source
- B. It turns the estuary into a sedimentary sink
- C. It represents operation of time-velocity asymmetry
- D. It represents equilibrium condition

Choose the correct option

- 1. A and C are correct
- 2. A and D are correct
- 3. B and C are correct
- 4. B and D are correct

एक ज्वारनदमुख में ज्वार के बाढ़ से संबंधित कथनों पर विचार करें।

- A. यह ज्वारनदम्ख को एक अवसादी स्त्रोत में बदल देता है
- B. यह ज्वारनदम्ख को एक अवसादी अभिगम में बदल देता है
- C. यह समय-गति विषमता के संचालन का प्रतिनिधित्व करता है
- D. यह साम्यावस्था का प्रतिनिधित्व करता है

सही विकल्प चुनें

- 1. A एवं C सही हैं
- 2. A एवं D सही हैं
- 3. B एवं C सही हैं
- 4. B एवं D सही हैं

A1: 1

		1
	A2:	2
		2
	A3:	3
		3
	A4:	4
		4

93 702093

Which of the following are described by the 'Rating curve'?

- 1. discharge and water stage
- 2. discharge and catchment area
- 3. sediment and solute concentrations and discharge
- 4. runoff and rainfall

'रेटिंग वक्र' द्वारा किसकी व्याख्या की जाती है?

- 1. विसर्जन एवं जल अवस्था
- 2. विसर्जन एवं जल ग्रहण क्षेत्र
- 3. अवसाद अथवा विलेय सांद्रता एवं विसर्जन
- 4. अपवाह एवं वर्षा

A1: 1

]

A2: 2

2

A3: 3

A4: 4

Objective Question

94 702094

Match the following

List-I	: Dominant process	List-II	: Land form
Α.	Vertical accretion	V.	River meander
B.	Lateral accretion	W.	Abandoned delta front
C.	Vertical erosion	X.	Point bar
D.	Lateral erosion	Y.	Gully channel
		Z.	Flood plain

Choose the correct option?

- 1. A-X; B-W; C-V; D-Y
- 2. A-W; B-Z; C-V; D-X
- 3. A-Z; B-W; C-Y; D-X
- 4. A-Z; B-X; C-Y; D-W

निम्न का मिलान करें

सूची-। : प्रमुख प्रक्रिया		सूची-॥: भू आकृति		
Α.	उध्वाधर अभिवृद्धि	V.	नदी विसर्पण	
B.	पार्श्व अभिवृद्धि	W.	परित्यक्त नदिमुख अग्र	
C.	उध्वीधर अपरदन	X.	बिंदु रेधिका	
D.	पार्श्व अपरदन	Y.	गली वाहिका	
		Z.	बाढ़ का मैदान	

सही विकल्प चुनें?

- 1. A-X; B-W; C-V; D-Y
- 2. A-W; B-Z; C-V; D-X
- 3. A Z; B W; C Y; D X
- 4. A-Z; B-X; C-Y; D-W

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

95 702095

Choose correct combination of the following statements for Equilibrium Line Altitude (ELA).

- A. It cannot be estimated using Cirque Floor altitude
- B. It represents a zone on glacier where accumulation is balanced by ablation.
- C. It can be estimated by minimum elevation of lateral moraines
- D. It can be estimated using toe-to-headwall ratio
- It can be estimated using ratio of accumulation area to the total glacier area

Choose the correct option.

- 1. A, B and C
- 2. B, D and E
- 3. A, D and E
- 4. B, C and D

साम्य रेखा उच्चता (ELA) के लिये निम्न कथनों के सही संयोजन को चुनें?

- A. यह सर्क फर्श उच्चता का उपयोग करते हुए आकलित नहीं किया जा सकता
- B. यह हिमनद के उस क्षेत्र का प्रतिनिधित्व करता है जहां संग्रहण, अपक्षरण द्वारा संतुलित होता है
- C. यह पार्श्विक हिमोढ़ों के निम्नतम उच्चता द्वारा आकलित किया जाता है
- D. यह पादग्र से शीर्षभित्त अनुपात का उपयोग करते हुए आकलित किया जा सकता है
- E. यह संग्रह क्षेत्र के साथ कुल हिमनद क्षेत्र के अनुपात का उपयोग करते हुए आकलित किया जा सकता है
- 1. A, B एवं C
- 2. B, D एवं E
- 3. A, D एवं E
- 4. B, C एवं D

A1: 1

1

A2: 2

A3: 3

3

A4: 4

Objective Question

96 702096

Arrange the following minerals in their ascending order of cation exchange capacity (CEC) at pH 7.

- A. Smectite
- B. Feldspar
- C. Fe-Oxyhydroxides
- D. Illite

Choose the correct option

- 1. B, A, C, D
- 2. B, C, D, A
- 3. D, A, B, C
- 4. A, D, C, B

	दिए गए खनिजों को, pH 7 पर, उनके बढ़ते हुए धनायन विनियम क्षमता (CEC) के							
	अनुक्रम में क्रमबद्ध करें।							
	A. स्मेक्टाइट							
	B. फेल्स्पार							
	C. लौह-ऑक्सिहाइड्राक्साइड							
	D. इलाइट							
	सही विकल्प चुनें।							
	1. B, A, C, D							
	2. B, C, D, A 3. D, A, B, C							
	4. A, D, C, B							
	A1: 1							
	1 A2: 2							
	2							
	A3: 3 3							
	A4: 4							
Objective Qu	4 estion							
97 702097	During break monsoon conditions the Tropical Easterly Jet moves							
	northward up to 30° N							
	2. northward up to 20° N							
	 3. southward up to 5° N 4. southward up to 10° N 							
	मानसून अवकाश अवस्था के दौरान उष्ण कटिबंधीय पूर्वी जेट की ओर							
	चलती है।							
	1. 30°N (3.) तक उत्तर की ओर							
	2. 20° N तक उत्तर की ओर							
	3. 5° N तक दक्षिण की ओर							
	4. 10° N तक दक्षिण की ओर							
	A1: 1							
	1 A2: 2							
	2							
	A3: 3							

98 702098

Match the following

List-I: Components of Earth's radiation budget		List-II: % of total shortwave incoming solar radiation at top of atmosphere	
A.	Long-wave Earth radiation directly from the surface to space	P.	107
B.	Long-wave Earth radiation from surface to atmosphere	Q.	63
C.	Long-wave radiation from atmosphere to the space	R.	30
D.	Solar radiation reflected and scattered back to space by atmosphere and Earth surface	S.	7

Choose the correct option

- 1. A-P; B-Q; C-R; D-S
- 2. A-Q; B-R; C-S; D-P
- 3. A-S; B-P; C-Q; D-R
- 4. A-S; B-R; C-P; D-Q

निम्न का मिलान करें

सूची-1: पृथ्वी के विकिरण बज़ट के संघटक		सूची-II: वायुमंडल की चोटी पर कुल लघुतरंग आगत सूर्य विकिरण का प्रतिशत	
Α.	सतह से आकाश को सीधी दीर्घ तरंग पृथ्वी विकिरण	P.	107
B.	सतह से वायुमंडल को दीर्घ तरंग पृथ्वी विकिरण	Q.	63
C.	वायुमंडल से आकाश को दीर्घ तरंग विकिरण	R.	30
D.	वायुमंडल एवं भू सतह द्वारा आकाश को सूर्य विकिरण का परावर्तन एवं प्रतिविकिरण	S.	7

सही विकलप को चुनें।

- 1. A P; B Q; C R; D S
- 2. A-Q; B-R; C-S; D-P
- 3. A S; B P; C Q; D R
- 4. A-S; B-R; C-P; D-Q

Objective Question

99 702099

Consider the following observation and the explanation.

Observation: Rural land surface with vegetation cover and adequate supply of moisture remains cooler than the adjacent urban surfaces.

Explanations:

- A. Bowen ratio is lower for rural land surface.
- B. Urban areas remain warmer than the surrounding rural areas due to trapping of heat in lower atmosphere.

Choose the correct option for the observation.

- 1. Both A and B are correct explanations
- 2. Only A is the correct explanation
- 3. Only B is the correct explanation
- 4. None of A and B is a correct explanation

दिये गये कथन एवं उसकी व्याख्या पर विचार करें

कथन: शहरी भूमि सतहों की अपेक्षा पर्याप्त आर्द्रता की आपूर्ति के साथ एवं वनस्पति आवरण वाले ग्रामीण भूमि सतह अधिक ठंडे रहते हैं

व्याख्याएं:

- A. ग्रामीण भूमि सतह के लिये बोवेन अनुपात कम होता है।
- B. निम्न वायुमंडल में ऊष्मा के प्रग्रहण के कारण शहरी क्षेत्र अपने चारों ओर के ग्रामीण क्षेत्र की अपेक्षा अधिक गर्म बना रहता है।

कथन के लिए सही विकल्प को चुनें।

- 1. A एवं B दोनों सही व्याख्या हैं।
- 2. केवल A सही व्याख्या है।
- 3. केवल B सही व्याख्या है।
- 4. A एवं B दोनों ही सही व्याख्या नहीं हैं।

A1: 1

1

A2: 2

		2
	A3:	3
		3
	A4:	4

100 702100

Match the following:

Column I : Features		Column II: Zoogeographical realr	
A.	Climate- limited region	P.	Oriental and Australian
B.	Main regions of the old- world tropics	Q.	Oriental and Ethiopian
C.	Barrier- limited regions	R.	Palearctic and Nearctic
D.	Wallace's Line	S.	Neotropical and Australian

Choose the correct options

- 1. A-Q, B-R, C-P, D-S
- 2. A-R, B-Q, C-S, D-P
- 3. A-P, B-S, C-Q, D-R
- 4. A-S, B-P, C-R, D-Q

निम्न का मिलान करें:

कॉलम् । : विशेषतायें		कॉलम II: प्राणी- भौगोलिक क्षेत्र		
Α.	जलवायु – सीमित क्षेत्र	P.	ओरिएंटल एवं आस्ट्रेलियाई	
B.	प्राचीन-विश्व के उष्णकटिबंधीय म्ख्य क्षेत्र	Q.	ओरिएंटल एवं इथियोपियन	
C.	बाधा सीमित क्षेत्र	R.	पेलि-आर्कटिक एवं नि-आर्कटिक	
D.	वैलेस रेखा	S.	नवोष्ण कटिबंधीय एवं आस्ट्रेलियाई	

सही विकल्प चुनें

- 1. A-Q, B-R, C-P, D-S
- 2. A-R, B-Q, C-S, D-P
- 3. A-P, B-S, C-Q, D-R
- 4. A-S, B-P, C-R, D-Q
- A1: 1
 - .
- A2: 2
 - ,
- A3: 3
 - 3
- A4: 4
 - _

	Based on records from 1950 to 2020, the average precipitation received at Mawsynram is					
	1. 12 – 14 m/y					
	2. 10 – 12 m/y					
	3. 8 – 10 m/y					
	4. 6 – 8 m/y					
	वर्ष 1950 से 2020 के बीच के अभिलेख के अनुसार मासिनराम में प्राप्त औसत वर्षा					
	1. 12 – 14 m/y					
	2. 10 – 12 m/y					
	3. 8 – 10 m/y					
	4. $6 - 8 \text{ m/y}$					
	A1: 1 1					
	A2: 2					
	2					
	A3: 3					
	3					
	A4: 4 4					
ojective Qu						
2 702102	Consider the following statements					
	A. Waves of shorter wavelengths have higher frequencies					
	B. Waves of shorter wavelengths contain higher energy					
	C. Waves of shorter wavelengths are emitted from objects with higher					
	temperature D. The emitted radiation decreases with temperature.					
	Choose the correct option					
	1. Only A is true					
	2. Only A and B are true					
	3. Only A, B and C are true					
	4. Only A, B, and D are true					

निम्न कथनों पर विचार करें

- A. लघ् तरंग दैध्यों के तरंगों की उच्च आवृत्तियां होती है
- B. लघु तरंगदैध्यों की तरंगें, उच्च ऊर्जा रखती हैं
- C. लघु तरंगदेध्यों की तरंगें, उच्च तापमान की वस्तुओं से उत्सर्जित की जाती है।
- D. तापमान के साथ उत्सर्जित विकिरण घटते हैं सही विकल्प को चुनें
- 1. केवल A सही है
- 2. केवल A तथा B सही हैं
- 3. केवल A, B तथा C सही हैं
- 4. केवल A, B, तथा D सही हैं
- A1: 1

1

A2: 2

2

A3: 3

.

A4: 4

Objective Question

103 702103

A is a gravity station at latitude 15° N. B and C are two other gravity stations at the same elevation, but B is 10 km east of A and C is 20 km north of A. If the gravity value measured at B is smaller than at A by 8.12 mgals, what would be the gravity value measured at C? (Assume no anomalous bodies are present at A, B or C)

- 1. Same as that at A
- 4.06 mgals smaller than that at A
- 3. 8.12 mgals smaller than that at A
- 4. 4.06 mgals larger than that at A

एक गुरुत्व पर्यवेक्षण स्थल A 15° N पर है। उसी ऊंचाई पर B एवं C दूसरे पर्यवेक्षण स्थल हैं, परंतु A के 10 km पूर्व में B तथा A के 20 km उत्तर मे C हैं। यदि B पर मापा गया गुरुत्व मान A से 8.12 mgals कम है, तब C पर मापा गया गुरुत्व मान क्या होगा? (मान लें कि A, B एवं C पर कोई भी असंगत खंड उपस्थित नहीं है)

- 1. जैसा A पर है वैसा ही
- 2. जैसा A पर है उस से 4.06 mgals कम
- 3. जैसा A पर है उस से 8.12 mgals कम
- 4. जैसा A पर है उस से 4.06 mgals अधिक

	A1:	1
		1
	A2:	2
		2
	A3:	3
		3
	A4:	4
		4

104 702104

A basement is repeatedly faulted resulting in the development of two horst-like structures A and B of limited thickness as indicated in the given figure. The average depth to the basement is $\sqrt{3}$ km. If the structure of A produces a maximum gravity anomaly of 4 mgals, then what would be the maximum gravity anomaly (in mgals) due to B?

- 1. $4\sqrt{2}$
- 2. $4\sqrt{3}$
- 3. 6.0
- 4. $6\sqrt{2}$

जैसा कि चित्र में दिखाया गया है दो सीमित मोटाई के उत्खंड (होर्स्ट) आकृतियों A तथा B की उत्पत्ति के लिए एक आधार तल कई बार भ्रंशित हुआ है। आधार तक औसत गहराई $\sqrt{3}$ km है। यदि आकृति A, 4 mgals की अधिकतम गुरूत्व असंगति उत्पन्न करती है, तब B के कारण अधिकतम गुरूत्व असंगति (mgals में) कितनी होगी?

- 1. $4\sqrt{2}$
- 2. $4\sqrt{3}$
- 3. 6.0
- 4. $6\sqrt{2}$
- A1: 1
- A2: 2
- ,
- A3: 3
- Δ4 · Δ

105 702105

If f_0 is the Larmor frequency measured at a location on the magnetic equator, what is the Larmor frequency measured at a location of magnetic inclination 45°? Assume no anomalous bodies are present at the places of measurements.

- 1. $(2/\sqrt{3})f_0$
- 2. $(\sqrt{2}/2)f_0$
- 3. $\sqrt{1.6} f_0$
- 4. $\sqrt{2.5} f_0$

यदि f_0 चुंबकत्व विषुवत रेखा के एक स्थान पर मापी गयी लारमर आवृत्ति है, तब 45° चुंबकत्व आनित के एक स्थान पर मापी गयी लारमर आवृत्ति क्या होगी? (मान लें कि मापन स्थलों पर कोई असंगत वस्तु नहीं है)

- 1. $(2/\sqrt{3})f_0$
- 2. $(\sqrt{2}/2)f_0$
- 3. $\sqrt{1.6} f_0$
- 4. $\sqrt{2.5} f_0$
- A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

106 702106

A N-S striking 2-dimensional body, at a place of magnetic inclination 30°, generates an anomaly of 150 gammas in the total field at some point. What would be the magnetic anomaly, at the same location, in the vertical component?

- It cannot be calculated with the given data
- 2. 75 gammas
- 3. $75\sqrt{3}$ gammas
- 4. 300 gammas

एक 30° के चुंबकत्व आनित के स्थान पर, एक उ.-द. नितलंब वाला द्वि-विमीय खंड किसी एक समय पर कुल क्षेत्र में 150 gammas की एक असंगति उत्पन्न करती है। उसी स्थान पर उर्ध्वाधर घटक में चुंबकत्व असंगति कितनी होगी?

- 1. यह दिए ह्ए डेटा से आकलित नहीं किया जा सकता
- 2. 75 gammas
- 3. $75\sqrt{3}$ gammas
- 4. 300 gammas

A1: 1

1

A2: 2

2

A3: 3

2

A4: 4

4

Objective Question

107 702107

The following figure shows a small part of a seafloor and its associated magnetic anomaly. Which of the following inferences is INVALID?

- The seafloor is spreading about A
- The seafloor spreading is caused by tectonic activity outside the area represented in the figure
- 3. The rocks on either side of A are magnetized in opposite directions
- The sea floor represented in the figure witnessed a magnetic reversal during its formation

दिया गया चित्र एक समुद्र तल का छोटा भाग एवं इससे संबंधित चुंबकत्व असंगति को दिखाता है। इनमें से कौन सा निष्कर्ष गलत है?

- समुद्र तल A के निकट प्रसरण कर रहा है।
- 2. समुद्रतल प्रसरण चित्र से दिखाये गये क्षेत्र के बाहर के एक विवर्तनिक (टेक्टोनिक) गतिविधि के कारण है।
- 3. A के दोनों तरफ की शैलें उल्टी दिशाओं में चुंबकित हैं
- 4. चित्र में दिखाये गए समुद्र तल का क्षेत्र अपने निर्माण के समय एक चुंबकीय व्युत्क्रमण का साक्षी रहा है।

A4: 4

Objective Question

108 702108

A single layered 35 km thick crust having a P-wave velocity of 6 km/s overlies a mantle having a velocity of 8 km/s. Then, the first arrival recorded at an epicentral distance of 120 km from an earthquake occurring at a depth of 10 km is

- Pg
- 2. P*
- Pn
- 4. PmP

एक 6 km/s के P-तरंग गति वाला भू-पर्पटी का 35 km मोटा एकल परत, एक 8 km/s गति वाले प्रावार के ऊपर स्थित है। तब, एक 10 km की गहराई पर हुए भूकंप से 120 km की अभिकेन्द्री दूरी पर किसका प्रथम आगमन अभिलेखित होगा?

- 1. Pg
- 2. P*
- 3. Pn
- 4. PmP
- A1: 1
 - 1
- A2: 2
 - 2
- A3: 3
- .
- A4: 4
- 4

Objective Question

109 702109

Which one of the source-receiver geometries in a seismic tomography experiment best resolves the model parameters (m1, m2) of the two horizontal layers?

- 1. A
- 2. B
- 3. C
- 4. D

एक भूकंपीय टोमोग्राफी प्रयोग में इनमें से कौन एक स्त्रोत(source)-गृहिता (receiver) -ज्यामितीय जो कि दो क्षैतिज परतों के प्रतिमान मापदंडों (m1, m2) को सही ज्ञात करेगा?

- A
 B
- 3. C
- 4. D
- A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

110 702110

A thick formation sandwiched between two thick shale beds, has a S.P. response varying from -50 mV to -20 mV and a uniform γ – ray response of 10 API. The formation is

- 1. a shaly sandstone
- 2. a hydrocarbon bearing clean sandstone
- 3. a hydrocarbon bearing shaly sandstone
- 4. a water bearing clean sandstone

दो मोटे शेल संस्तरों के बीच मध्यहित एक मोटे निर्माण की S.P अन्क्रिया -50 mV से -20 mV के बीच परिवर्ती है एवं 10 API का एक γ – किरण की अन्क्रिया है। यह निर्माण

- एक शेलमय बालूपत्थर है 1.
- एक हाइड्रोकार्बन-युक्त स्वच्छ बालू पत्थर है
- एक हाइड्रोकार्बन-युक्त शेलमय बालू पत्थर है
- एक जल-युक्त स्वच्छ बालू पत्थर है 4.

A1: 1

A2: 2

A3: 3

3

A4: 4

Objective Question

111 702111

A discrete signal x[n] is given as x[n]= (1/2)ⁿ u[n], where u is the unit step sequence and n takes integral values. If the unit sample sequence is given as δ [n], the inverse filter h[n] for the signal x[n] is

- $h[n] = \delta[n] 1/2 \delta[n-1]$
- 2. $h[n] = (-1/2)^n u[n]$
- 3. $h[n] = 2^n u[n]$
- $h[n] = \delta[n]$

एक विविक्त संवेद x[n] को x[n]= (1/2)n u[n] से दिखाया गया है, जहां u एक इकाई चरण अन्क्रम एवं n पूर्णांक मान है। यदि इकाई प्रतिदर्श अन्क्रमण को δ [n] से दिखाया जाये, तब संवेद x[n] के लिए व्युत्क्रम निष्पंदन (फिल्टर) h[n] _____ होगा।

- 1. $h[n] = \delta [n] - 1/2 \delta [n-1]$
- $h[n] = (-1/2)^n u[n]$
- $h[n] = 2^n u[n]$
- $h[n] = \delta[n]$

A1: 1

A2: 2

A3: 3

3

A4: 4

Objective Question

	A real valued discrete time series has a duration of 0.5 seconds. If the sampling
	interval is 4 milliseconds, the possible range of frequencies in the time series is
	1. 0 Hz to 125 Hz
	2. 2 Hz to 125 Hz
	3. 0 Hz to 2 Hz
	4. 0 Hz to 250 Hz
	एक वास्तविक मान विविक्त काल श्रेणी की अवधि 0.5 सेकेन्ड है। यदि प्रतिदर्श अंतराल
	4 मिलीसेकेंड है, काल श्रेणी में आवृत्तियों का सम्भाव्य परास है।
	1. 0 Hz to 125 Hz
	2. 2 Hz to 125 Hz
	3. 0 Hz to 2 Hz 4. 0 Hz to 250 Hz
	4. 0 HZ to 250 HZ
	A1: 1
	1
	2 A3: 3
	3
	A4: 4
Objective Qu	4
113 702113	
	Given a system of linear equations
	2x + y + z = 0
	2x + 3y + 2z = 0
	2y + z = 0
	The number of non-zero singular values associated with the above system is
	1. 0
	2. 1 3. 2
	4. 3
	रेखीय सिमकरणों की एक व्यवस्था दी गयी है
	2x + y + z = 0
	2x + 3y + 2z = 0
	2y + z = 0
	ऊपर दिए गए व्यवस्था के साथ संबंधित शून्य रहित एकक मानों की संख्या
	होगी।
	1. 0
III II I	

	1			
	A2: 2			
	2			
	A3: 3			
	3			
	A4: 4			
	4			
Ohie	ective Question			

114 702114

The distortion produced by the application of normal moveout (NMO) correction to seismic CMP gathers is termed as "NMO stretch." NMO stretch is more pronounced for

- shallower events and farther offsets
- shallower events and nearer offsets
- deeper events and farther offsets
- deeper events and near offsets

भूकंपीय सी.एम.पी. (CMP) संग्राहक (गैदर्स) पर सामान्य बाहय गमन (NMO) संशोधन के प्रयोग द्वारा उत्पन्न विकृति को "NMO विस्तार" कहा जाता है। NMO विस्तार के लिए अधिक स्पष्ट होता है।

- उथली घटनायें एवं अतिदूर विस्थिति
- उथली घटनायें एवं निकट विस्थिति
- गभीर घटनायें एवं अतिदूर विस्थिति
- गभीर घटनायें एवं निकट विस्थिति

A1: 1

A2: 2

A3: 3

A4: 4

Objective Question

115 702115

The direct arrivals in a seismic shot gather have a linear moveout with a slope of 0.67 s/km. The slope of the corresponding event in the FK domain is

- $0 Hz/km^{-1}$
- $0.33 \, Hz/km^{-1}$
- $0.67 \, Hz/km^{-1}$
- $1.5 \, Hz/km^{-1}$

	एक भूकंपीय शॉट संग्राहक (गैदर) में सीधे आगमन के लिए एक रेखीय बाह्य गमन का
	ढाल 0.67 s/km है। एफ.के. (FK) परिक्षेत्र में तदन्सार ढाल है।
	1. $0 Hz/km^{-1}$
	2. $0.33 Hz/km^{-1}$
	3. $0.67 Hz/km^{-1}$
	4. $1.5 Hz/km^{-1}$
	A1: 1
	1
	A2: 2 2
	A3: 3
	3
	A4: 4
Objective Qu	4 testion
116 702116	In the electromagnetic wave equation ∇^2 E- k^2 E =0, the propagation constant 'k'
	for a sinusoidal EM wave propagating through subsurface will be:
	1 $\pm \sqrt{j \omega \mu \sigma - \omega^2 \mu \epsilon}$
	2. $\pm \sqrt{\omega\mu\sigma - j\omega^2\mu\epsilon}$
	3. $\pm \sqrt{j \omega \mu \sigma + \omega^2 \mu \epsilon}$
	4. $\pm \sqrt{\omega\mu\sigma + j\omega^2\mu\epsilon}$
	(ω : Angular frequency; μ : magnetic permeability; σ : conductivity; ϵ :
	permittivity; j: complex representation)
	एक विद्युतचुबंकत्व तरंग समीकरण $\nabla^2 E - k^2 E = 0$ में, उपसतह द्वारा प्रसारित ज्यावक्रीय
	EM तरंग के लिए प्रसारण स्थिरांक 'k' होगा।
	$1 \qquad \pm \sqrt{j \omega \mu \sigma - \omega^2 \mu \epsilon}$
	2. $\pm \sqrt{\omega\mu\sigma - j\omega^2\mu\epsilon}$
	3. $\pm \sqrt{j\omega\mu\sigma + \omega^2\mu\epsilon}$
	4. $\pm \sqrt{\omega\mu\sigma + j\omega^2\mu\epsilon}$
	(ω: कोणीय बारंबारता; μ: चुंबकत्व पारगमयता; σ: चालकता; ε: विद्युतशीलता; j: सम्मिश्र
	निरूपण)
	A1: 1
	1
	A2: 2
	2 A3: 3
	3
	A4: 4
	i de la companya de

117 702117

The longitudinal resistivity of a rock, comprising of two horizontally stratified layers of resistivity ρ_1 and ρ_2 of 5 m thickness each, is 80 Ω m. If resistivity ρ_1 is 100 Ω m, then the resistivity ρ_2 will be close to

- 1. 64 Ωm
- 2. 67 Ωm
- 3. 70 Ωm
- 4. 73 Ωm

एक शैल जो कि दो 5 m मोटे क्षैतिज स्तरित परतों से बना है, एवं दोनों परतों की प्रतिरोधकता ρ_1 तथा ρ_2 है। शैल की अनुदेध्य प्रतिरोधकता $80~\Omega$ m है। यदि प्रतिरोधकता ρ_1 , $100~\Omega$ m है, तब प्रतिरोधकता ρ_2 _____ के नजदीक होगा।

- 1. $64 \Omega m$
- 2. 67 Ωm
- 70 Ωm
- 4. 73 Ωm

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

118 702118

The skin depth of a plane wave traveling vertically downward in a homogeneous medium is 100 m. At what depth, the amplitude of EM wave will become 25% of the amplitude at the Earth's surface?

- 1. 119 m
- 2. 129 m
- 3. 139 m
- 4. 149 m

एक समांगी माध्यम में ऊर्ध्वाधर नीचे की ओर आती हुई समतल तरंग की परत गभीरता 100 m है। किस गभीरता पर ई.एम. (EM) तरंग का आयाम पृथ्वी के सतह पर आयाम का 25% हो जाएगा?

- 1. 119 m
- 2. 129 m
- 3. 139 m
- 4. 149 m

A1: 1

1

A2: 2

2

A3: 3

3 A4: 4

4

Objective Question

119 702119

A 1.0 kg parcel of dry air present at 500 hPa level in the atmosphere has temperature equals to $-\,27^0$ C. What is the potential temperature of this air parcel? (Given specific gas constant for dry air (R_d)= 287 JKg⁻¹ K⁻¹, Specific heat of dry air at constant pressure (C_P)= 1004 JKg⁻¹ K⁻¹)

- 1. 250K
- 2. 280K
- 320K
- 4. 300K

वायुमंडल में 500 hPa पर उपस्थित एक 1.0 kg के शुष्क वायुखंड का तापमान -27° C है। इस वायु खंड का स्थैतिज़ तापमान क्या होगा? (दिया गया: शुष्क वायु के लिए विशिष्ट गैस स्थिरांक (R_d)= 287 JKg $^{-1}$ K $^{-1}$, स्थिर दाब पर शुष्क वायु की विशिष्ट ऊष्मा (C_P)= 1004 JKg $^{-1}$ K $^{-1}$)

- 1. 250K
- 280K
- 3. 320K
- 4. 300K

A1: 1

A2: 2

2

A3: 3

3

A4: 4

4

120 702120

What is the minimum super- saturation level that is required for a cloud droplet with radius 0.04 μm to exist at an ambient temperature of 2°C in the absence of any aerosol? (Given surface tension of water $\sigma = 7.5 \times 10^{-2} \, \text{Nm}^{-1}$, Specific gas constant for water $R_V = 461 \, \text{JK}^{-1} \, \text{kg}^{-1}$, Specific volume of water $\alpha_I = 1 \times 10^{-3} \, \text{m}^3 \, \text{kg}^{-1}$)

- 1. 3%
- 2. 1%
- 3. 5%
- 4. 4%

वायु विलय की अनुपस्थिति में 2° C के परिवेशी तापमान पर एक $0.04~\mu m$ त्रिज्या के मेघ बूँद को अस्तितव में रहने के लिए न्यूनतम कितने अतिसंतृत्पता स्तर की आवश्कता होगी? (दिया गया : जल की सतह तन्यता $\sigma = 7.5~\text{x}10^{-2}~\text{Nm}^{-1}$, जल के लिए विशिष्ट गैस स्थिरांक $R_v = 461~\text{JK}^{-1}~\text{kg}^{-1}$, जल की विशिष्ट आयतन $\alpha_1 = 1\text{x}10^{-3}~\text{m}^3~\text{kg}^{-1}$)

- 1. 3%
- 2. 1%
- 3. 5%
- 4. 4%

A1: 1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

121 702121

What will be the temperature change of an isolated air parcel of 100 kg due to a condensation of 100 g of water vapour (Given: Latent heat of condensation = $2.26 \times 10^6 \text{ J/kg}$. Specific heat of air at constant pressure = $1004 \text{ J/kg}^{-1}\text{K}^{-1}$)

- 1. 3.2°C
- 2. 1.5°C
- 3. 2.3°C
- 4 4 200

100 g जल वाष्प के संघनन के कारण 100 kg के एक विलगित वायु खंड के तापमान में कितना परिवर्तन होगा (दिया गया: संघनन की गुप्त ऊष्मा = 2.26×10^6 J/kg. स्थिर दाब पर वायु की विषिष्ट उष्मा = 1004 Jkg $^{-1}$ K $^{-1}$)

- 1. 3.2°C
- 1.5°C
- 2.3°C
- 4. 4.2°C

A1: 1

	1 A2: 2 2 A3: 3 3 A4: 4			
	A4: 4 4			
Object	tive Question			

122 702122

Which one of the following statements does NOT represent a positive feedback in climate system?

- 1. When surface temperature increases, ice and snow cover decreases
- 2. Moisture content increases with increasing temperature
- Surface cooling increases ice and snow cover leading to increased albedo
- 4. Increase in temperature increases the amount of cloud cover

इनमें से कौन एक कथन जलवायु व्यवस्था में धनात्मक पुनर्भरण नहीं दर्शाता है?

- जब सतह तापमान बढ़ता है, हिम एवं तुषार का अनावरण घट जाता है।
- 2. तापमान के साथ आर्द्रता की मात्रा बढ़ जाती है।
- सतह शीतलन हिम एवं तुषार आवरण को बढ़ाता है जो परिमाणस्वरूप श्विती को बढ़ाता है।
- तापमान में बढत मेघ आवरण को बढाता है।

A4: 4

Objective Question

123 702123

Which one of the following is a FALSE statement about atmospheric Ekman layer?

- The height at which winds equal geostrophic winds is called the top of the Ekman layer
- Eddy viscosity coefficient is assumed constant over the entire Ekman laver
- Within the Ekman layer, there is a component of wind which is directed towards high pressure
- Height of atmospheric Ekman layer is about 1km

वाय्मंडलीय एक्मन् परत के लिए इनमें से कौन एक कथन गलत है?

- पवनें जिस ऊँचाई पर भू-विक्षेपी पवनों के बराबर होती हैं उस ऊंचाई को एक्मन्
 परत का शीर्ष कहा जाता है।
- 2. पूरे एक्मन् परत के ऊपर भंवर श्यानता गुणांक को स्थिरांक माना जाता है।
- एक्मन् परत के अंदर, पवन का एक संघटक उच्च दाब की तरफ निर्देशित होता
 है।
- 4. वाय्मंडलीय एक्मन् परत की ऊँचाई लगभग 1km होती है।

A1: 1

1

A2: 2

2

A3: 3

•

A4: 4

Objective Question

124 702124

Statement A: The relation between frequency and wavenumber is called dispersion relation.

Statement B: Dispersive waves are waves for which phase speed does not vary with wavenumber.

Given the two statements, choose the correct option.

- Statement A is incorrect and statement B is correct
- Statement A is correct and statement B is incorrect
- 3. Both Statement A and statement B are incorrect
- 4. Both Statement A and statement B are correct

कथन A: आवृत्ति एवं तरंगसंख्या के बीच के संबंध को प्रकीर्णन संबंध कहते हैं। कथन B: प्रकीर्णित तरंगे वो तरंगे होती हैं जिनके लिए कला गित तरंगसंख्या के साथ परिवर्तित नहीं होती है।

दिए गए कथनों से सही विकल्प च्नें।

- 1. कथन A गलत एवं कथन B सही है।
- कथन A सही है एवं कथन B गलत है।
- 3. दोनों कथन A तथा B गलत हैं।
- 4. दोनों कथन A तथा B सही हैं।

A1: 1

1

A2: 2

2

A3: 3 3 A4: 4

Objective Question

125 702125

Which of the statements is FALSE with respect to Quasi-Biennial Oscillation (QBO)?

- 1. One phase of QBO takes 12-15 months to reverse to another phase
- It is a meridional circulation
- It causes sudden stratospheric warming
- 4. Each wind regime (easterly/westerly) appears above 30 km and propagates downward at 1 km month⁻¹

कल्प द्विवार्षिक दोलन (QBO) के संदर्भ में कौन सा कथन गलत है?

- QBO की एक कला से दूसरे कला में लौटने के लिए 12 से 15 महिने लगते हैं।
- 2. यह एक याम्योत्तरीय परिसंचरण होता है।
- 3. यह एक आकस्मिक समतापमंडलीय तापन का कारण होता है।
- प्रत्येक पवन प्रवृत्ति (पूर्वी/पिश्चमी) 30 km के ऊपर प्रकट होती है एव 1 km प्रति माह से नीचे की तरफ प्रसारित होती है।

A1: 1

. _

A2: 2

2

A3: 3

. .

A4: 4

Objective Question

126 702126

Which one of the following is a reason for large movement over land (without weakening) of monsoon depression that crosses Head Bay of Bengal region?

- 1. Steered by easterly jet system
- Move over land in an environment that is "marine-like"
- Presence of strong vertical shear of horizontal winds
- Reduced friction force during southwest Indian monsoon season

एक मानसून अवदाब जो कि हेड बंगाल की खाड़ी को पार करता है इस के थल पर विशाल गमन (बिना कमजोर हुए) के लिए कौन सा एक कारण है?

- पूर्वी जेट प्रणाली द्वारा परिचालित
- 2. पर्यावरण जो कि "सम्द्र-त्लनीय" है में थल के ऊपर गमन करना
- 3. क्षैतिज पवनों के शक्तिशाली उर्ध्वाधर अपरूपण का होना
- 4. दक्षिणपश्चिम भारतीय मानसून मौसम के दौरान लघुकृत घर्षण बल

		1
	A2:	2
		2
	A3:	3
		3
	A4:	4
		4

127 702127

Which one of the following statements is FALSE about atmospheric energetics? (Given E_{l} is internal energy, E_{P} is gravitation potential energy, $E_{I} + E_{P}$ is total potential energy, R is specific gas constant for dry air, C_{P} and C_{V} are specific heats at constant pressure and constant volume, respectively.)

- 1. $C_V E_P = R E_I$
- 2. $E_P + E_I = \left(\frac{C_P}{C_V}\right) E_I = \left(\frac{C_P}{R}\right) E_P$
- Only 0.5% of the total potential energy is available for conversion to kinetic energy for the entire atmosphere
- Out of the available potential energy, only about 20% is actually converted to kinetic energy

वायुमंडलीय और्जिकी के बारे में इनमें से कौन सा एक कथन गलत है? (दिया गया कि E_1 आंतरिक ऊर्जा है, E_P गुरूत्व स्थितिज ऊर्जा, $E_I + E_P$ कुल स्थितिज ऊर्जा है, शुष्क वायु के लिए R विशिष्ट गैस स्थिरांक, C_P तथा C_V क्रमश: स्थिर दाब एवं स्थिर आयतन पर विषिष्ट ऊष्मा है)

- $1. C_V E_P = R E_I$
- 2. $E_P + E_I = \left(\frac{C_P}{C_V}\right) E_I = \left(\frac{C_P}{R}\right) E_P$
- पूरे वायुमंडल के लिए कुल स्थितिज ऊर्जा का केवल 0.5% ही गतिज ऊर्जा में परिवर्तन के लिए उपलब्ध है।
- 4. पूरे उपलब्ध स्थितिज ऊर्जा में से केवल लगभग 20% ही वास्तव में गतिज ऊर्जा में परिवर्तन होता है।

A1: 1

A2: 2

2

A3: 3

A4: 4

,

Objective Question

Find the FALSE statement about a baroclinic atmosphere.

- 1. Isolines of density and pressure intersect.
- 2. No geostrophic vertical wind shear is present.
- 3. Large scale vertical velocity is present.
- 4. Isolines of pressure and potential temperature intersect.

दाब प्रवणिक वायुमंडल के बारे में गलत कथन को पहचानें।

- 1. घनत्व एवं दाब के सममान रेखाएं एक दूसरे को काटती हैं।
- 2. कोई भूविक्षेपी उर्ध्वाधर वायु अपरूपण उपस्थित नहीं है।
- बड़े पैमाने पर उध्वाधर वेग उपस्थित है।
- 4. दाब एवं स्थितिज तापमान की सममान रेखाएं एक दूसरे को काटती हैं।

A1: 1

. . .

A2: 2

-

A3: 3

. .

A4: 4

Objective Question

129 702129

Which one of the following statements is TRUE about feedbacks in climate system?

- Water vapour feedback is positive feedback in climate
- Snow/ice albedo feedback is negative feedback in climate
- Water vapour feedback is negative feedback in climate
- Snow albedo has no effect on climate

जलवायु तंत्र में प्रतिभरणों के बारे में इनमें से कौन सा कथन सही है?

- 1. जलवायु में जल वाष्प प्रतिभरण एक धनात्मक प्रतिभरण है।
- 2. जलवायु में तुषार/हिम श्विति प्रतिभरण एक ऋणात्मक प्रतिभरण है।
- 3. जल वाष्प प्रतिभरण एक ऋणात्मक प्रतिभरण है।
- 4. त्षार श्विति का जलवाय पर कोई प्रभाव नहीं पड़ता है।

A1: 1

.

A2: 2

2

A3: 3

A4: 4

130 702130

On 10 October 2014, as cyclonic storm Hudhud approached Visakhapatnam, a buoy beneath the storm recorded a sea surface temperature of 29° C. At the same time a satellite measured cloud top temperature of -74° C. Assuming that the cyclonic storm Hudhud behaved like a Carnot cycle, how efficient was Hudhud as a heat engine?

- 1. 0.22
- 2. 0.34
- 3. 0.42
- 4. 0.54

एक चक्रवाती झंझावात हुदहुद 10 अक्टूबर 2014 को विशाखापत्तनम पहुंचता है एवमं झंझावात के नीचे एक उत्प्लव (बुई) 29°C का समुद्र सतह तापमान अभिलेखित करता है। उसी समय पर एक उपग्रह – 74°C का मेघ शीर्ष तापमान मापन किया। मान लेते हैं कि चक्रवाती झंझावात हुदहुद कार्नो चक्र की तरह व्यवहार करता है, तब हुदहुद एक ऊष्मा इंजन की तरह कितना कार्यक्षम होगा?

- 1. 0.22
- 2. 0.34
- 3. 0.42
- 4. 0.54

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

131 702131

Which of the statement is FALSE about data assimilation in Numerical Weather Prediction (NWP)?

Data assimilation is

- a technique of bringing observational data into a regular grid.
- 2. a technique to generate initial condition for NWP model.
- a technique to integrate the forecast equation in time.
- based on a least square method.

संख्यात्मक मौसम पूर्वाकलन (NWP) में आंकड़ा स्वांगिकरण के बारे में इनमें से कौन कथन गलत है?

आंकडा स्वांगीकरण

- 1. नियमित ग्रिड में प्रेक्षण आंकड़ों को लाने की तकनीक
- 2. NWP मॉडल के लिए प्रारंभिक अवस्था उत्पन्न करने की तकनीक
- 3. समय में पूर्वानुमान समीकरण को समाहित करने की तकनीक
- 4. न्यूनतम वर्ग विधि पर आधारित

A1: 1

. . .

A2: 2

2

A3: 3

3

A4: 4

Objective Question

132 702132

Match column I and column II about subtropical westerly jet stream in northern hemisphere

Column I Jet stream region		Column II Convergence /Divergence	
Α	Left front	Р	Convergence
В	Right front	Q	Divergence
C	Left rear		
D	Right rear		

Choose the correct option

- 1. A-Q; B-P; C-P; D-Q
- 2. A-P; B-Q; C-Q; D-P
- 3. A-Q; B-P; C-Q; D-P
- 4. A-P; B-Q; C-P; D-Q

उत्तरी गोलार्ध में उपोष्णकटिबंधीय पश्चिमी जेट प्रवाह के बारे में कॉलम । के साथ कॉलम ॥ का मिलान करें।

कॉलम ।			कॉलम II		
जेट प्रवाह क्षेत्र			अभिसरण /अपसरण		
Α	बायां अग्र	Р	अभिसरण		
В	दायां अग्र	Q	अपसरण		
С	बायां पश्च	3			
D	दायां पश्च				

सही विकल्प चुनें:

- 1. A Q; B P; C P; D Q
- 2. A-P; B-Q; C-Q; D-P
- 3. A Q; B P; C Q; D P
- 4. A-P; B-Q; C-P; D-Q

A1: 1

1

A2: 2

A3: 3

3

A4: 4

4

Objective Question

133 702133

If the mixing ratio and saturation mixing ratio of an air parcel are 3 g kg^{-1} and 6.5 g kg^{-1} respectively, then what is the relative humidity (RH) of this air parcel?

- 1. 26.2%
- 2. 56.2%
- 3. 46.2%
- 4. 36.2%

यदि एक वायु खंड का मिश्रण अनुपात एवं संतृप्त मिश्रण अनुपात क्रमश: 3 g kg⁻¹ तथा 6.5 g kg⁻¹ है, तब इस वाय् खंड की सापेक्ष आर्द्रता (RH) क्या होगी?

- 1. 26.2%
- 2. 56.2%
- 3. 46.2%
- 4. 36.2%

A1: 1

J

A2: 2

2

A3: 3

3

A4: 4

Objective Question

134 702134

An unsaturated air parcel originating at the surface of the earth (z=0 m) has temperature of 25°C. What will be the temperature of this air parcel if it undergoes adiabatic displacement to the top of the mixed boundary layer and remains unsaturated (z=800 m)?

- 1. 11.2°C
- 2. 32.8°C
- 3. 17.2°C
- 4. 21.2°C

पृथ्वी की सतह (z=0 m) पर उत्पन्न एक असंतृप्त वायु खंड का तापमान 25°C है। मिश्रित सीमा परत (z=800 m) के चोटी पर इस वायु खंड का तापमान कितना होगा यदि यह रुद्धोष्म रूप से विस्थापित हो रहा हो और असंतृप्त रहे?

- 1. 11.2°C
- 2. 32.8°C
- 17.2°C
- 4. 21.2°C

A1: 1

A2: 2

2

A3: 3

A4: 4

4

A lower oxygen isotopic composition (δ^{18} O) of planktic foraminifera compared to that of the benthic foraminifera at a given location in ocean indicates

- Warmer surface temperature
- Cooler surface temperature
- 3. Cooler global temperature
- 4. Increased ice volume effect

सागर में एक दिए स्थान पर नितलस्थ फोरामिनिफेरा की तुलना में प्लवक फोरामिनिफेरा के ऑक्सिजन समस्थानिक संयोजन (δ¹8O) की लघुता ____ बतलाता है।

- 1. गर्म सतह तापमान
- 2. शीतल सतह तापमान
- शीतल वैश्विक तापमान
- 4. वर्धित हिम आयतन प्रभाव

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

.

Objective Question

136 702136

If the concentration of an ion in a reservoir is diluted to 50% by adding pure water, and the rate of input of that cation to the reservoir doubled, the residence time of that ion in the reservoir would

- decrease by half.
- 2. increase by half.
- 3. decrease by factor of four.
- remains unchanged.

एक जलाशय में शुद्ध जल को डाल कर एक आयन को 50% तक तनुकृत किया गया एवं उस धनायन की जलाशय में आगत दर को दो गुना किया गया, उस आयन का जलाशय में निवास समय

- आधा घट जाएगा।
- आधा बढ़ जाएगा।
- चार ग्ना घट जाएगा।
- 4. वैसा ही बना रहेगा।

A1: 1

A2: 2

		2
	A3:	3
		3
	A4:	4
		4

137 702137

Which one of the following is TRUE about ocean acidification?

- 1. It decreases carbonate ion concentration
- 2. It increases carbonate ion concentration
- It decreases bicarbonate ion concentration
- 4. It decreases concentration of the dissolved CO2

सागर अम्लीकरण के बारे में इनमें से कौन सा एक सही है?

- 1. यह कार्बोनेट आयन की सांद्रता को घटाता है।
- 2. यह कार्बोनेट आयन की सांद्रता को बढ़ाता है।
- 3. यह बाईकार्बीनेट की सांद्रता को घटाता है।
- यह घुले हुए CO₂ की सांद्रता को घटाता है।

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

138 702138

Find the correct match

	Isolines		Property
Α	Isohaline	Р	Lines of equal density
В	Isopycnal	Q	Lines of equal salinity
C	Isobath	R	Lines of equal depth
D	Isohyet	S	Lines of equal rainfall

Choose the correct option

- 1. A-Q, B-P, C-R, D-S
- 2. A-S, B-R, C-P, D-Q
- 3. A-R, B-P, C-Q, D-S
- 4. A-Q, B-P, C-S, D-R

सही मिलान करें

समरेखाएं		गुण	Ţ
Α	Isohaline	Р	समान घनत्व की रेखाएं
В	Isopycnal	Q	समान लवणता की रेखाएं
С	Isobath	R	समान गहराई की रेखाएं
D	Isohyet	S	समान वर्षा की रेखाएं

सही विकल्प चुनें

- 1. A-Q, B-P, C-R, D-S
- 2. A-S, B-R, C-P, D-Q
- 3. A-R, B-P, C-Q, D-S
- 4. A-Q, B-P, C-S, D-R

A1: 1

1

A2: 2

2

A3: 3

A4: 4

. . . .

Objective Question

139 702139

A shallow water wave travels at a speed of V ms⁻¹ in an ocean of depth 2500 m. What would be the depth of the ocean in which speed of this wave reduces to V/5 ms⁻¹?

- 1. 12.5 m
- 2. 100 m
- 3. 250 m
- 4. 500 m

एक सागर गभीरता 2500 m में एक उथला जल तरंग V ms⁻¹ के गति से यात्रा कर रहा है। जहां पर इस तरंग की गति घट कर V/5 ms⁻¹ हो जाती है, वहां पर सागर की गहराई कितनी होगी?

- 1. 12.5 m
- 2. 100 m
- 3. 250 m
- 4. 500 m

A1: 1

1

A2: 2

		2
	A3:	3
		3
	A4:	4
		4

140 702140

A wind wave at ocean surface has a wave height and wavelength of 5 m and 12 m, respectively. What would be its wave steepness (S) and wave energy per unit area (E, in J m^{-2})? (Given: Seawater density = 1030 kg m^{-3} , g = 9.8 ms^{-2})

- 1. S = 0.416, E = 31543
- 2. S = 2.40, E = 63086
- 3. S = 2.40, E = 6308
- 4. S = 0.416, E = 50470

समुद्र सतह पर एक वायु तरंग के पास तरंग उच्चता एवं तरंगदैर्ध्य क्रमश: 5 m एवं 12 m हैं। इसकी तरंग प्रवणता (S) एवं प्रति ईकाई क्षेत्रफल तरंग ऊर्जा (E, J m⁻² में) क्या होगी? (दिया गया: समुद्र जल घनतव = 1030 kg m⁻³, g = 9.8 ms⁻²)

- 1. S = 0.416, E = 31543
- 2. S = 2.40, E = 63086
- 3. S = 2.40, E = 6308
- 4. S = 0.416, E = 50470

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

4

Objective Question

141 702141

Consider the following statements.

Statement (A): The oceanic mesoscale eddies always rotate clockwise in the northern hemisphere.

Statement (B): A clockwise rotating mesoscale eddy in northern hemisphere has warmer water at its core compared to outside eddy.

Statement (C): A subtropical geostrophic gyre in the southern hemisphere always has counterclockwise circulation.

Select the CORRECT option

- 1. Statements A and B are True; Statement C is False
- 2. Statements B and C are True: Statement A is False
- 3. Statement B is True; Statements A and C are False
- 4. Statements A, B, and C are True

निम्न कथनों पर विचार करें

कथन (A): उत्तरी गोलार्द्ध में समुद्री मध्य-मापक्रम भंवरे सदैव घड़ी की दिशा में घूर्णन करते हैं।

कथन (B): उत्तरी गोलार्द्ध में घड़ी की दिशा में घूमते मध्य-मापक्रम भंवर के बाहर की तुलना में इसके क्रोड़ में अधिक गर्म जल होता है।

कथन (C): दक्षिणी गोलार्द्ध में एक उप-उष्णकिटबंधीय भूविक्षेपी अवघूर्ण (गॉयर) सदा घड़ी की दिशा के विपरित परिचालन करता है।

सही विकल्प चुनें।

- 1. कथन A एवं B सही हैं, कथन C गलत है
- 2. कथन B एवं C सही हैं, कथन A गलत है
- कथन B सही है, कथन A एवं C गलत हैं
- 4. कथन A, B, एवं C सही हैं

A1: 1

1

A2: 2

2

A3: 3

A4: 4

_

Objective Question

142 702142

Consider the following statements:

- A. According to the definition, in-situ temperature is not a conservative property but potential temperature is.
- B. When it is not possible to measure the in-situ temperature, the potential temperature is measured instead.
- Both surface heating of the oceans and rainfall promote stability of surface layers.

Choose the correct option.

- Only A and C are true
- Only A and B are true
- Only B and C are true
- 4. Only B is true

निम्न कथनों पर विचार करें:

- परिभाषा के आधार पर, स्व-स्थाने तापमान एक संरक्षी गुण नहीं है, परंतु
 स्थैतिज तापमान एक संरक्षी गुण है।
- B. जब स्व-स्थाने तापमान का मापन नहीं किया जा सकता है, तब इसके बजाय स्थैतिज तापमान का मापन करते हैं।
- C. सागरों का सतह तापमान एवं वर्षा दोनों ही सतह परतों के स्थिरता को बढ़ावा देता है।

सही विकल्प को चुनें।

- 1. केवल A तथा C सही हैं
- 2. केवल A तथा B सही हैं
- 3. केवल B तथा C सही हैं
- 4. केवल B सही है

A1: 1

1

A2: 2

A3: 3

3

A4: 4

4

Objective Question

143 702143

What would be the concentration of CFC in seawater at equilibrium with its partial pressure of 300 \times 10 $^{-12}$ atm at 25°C (given solubility coefficient of CFC at 25°C is 20.7 \times 10 $^{-3}$ mol kg $^{-1}$ atm $^{-1}$)?

- 1. 6.2 × 10⁻¹² mol kg⁻¹
- 6.2 × 10⁻¹² mmol kg⁻¹
- 3. $6.2 \times 10^{-12} \, \text{nmol kg}^{-1}$
- 6.2 × 10⁻¹² µmol kg⁻¹

25°C पर 300 × 10-12 के आंशिक दाब के साथ साम्यावस्था पर समुद्र जल में CFC की सांद्रता क्या होगी?

(दिया गया कि 25°C पर CFC की विलेयता गुणांक 20.7 × 10-3 mol kg-1 atm-1)

- 1. $6.2 \times 10^{-12} \text{ mol kg}^{-1}$
- 2. 6.2×10^{-12} mmol kg⁻¹
- 3. 6.2×10^{-12} nmol kg⁻¹
- 4. $6.2 \times 10^{-12} \, \mu \text{mol kg}^{-1}$

A1: 1

	1
A2:	2
	2
A3:	3
	3
A4:	4
	4

144 702144

The figure shows profiles of the parameter A in oceans P & Q. Which of the following statements is correct?

- 1. A is NO₃-; P and Q represent Pacific and Atlantic oceans, respectively.
- A is dissolved oxygen; P and Q represent Pacific and Atlantic oceans, respectively.
- 3. A is NO₃; Q and P represent Pacific and Atlantic oceans, respectively.
- 4. A is dissolved oxygen; Q and P represent Pacific and Atlantic oceans, respectively.

चित्र में सागर P एवं Q में मापदंड (parameter) A का पार्श्वचित्र दिखाया गया है इनमें से कौन सा एक कथन सही है?

- 1. A, NO₃ है; P एवं Q क्रमश: प्रशांत एवं अटलांटिक महासागर हैं।
- 2. A घुला ऑक्सिजन है; P एवं Q क्रमश: प्रशांत एवं अटलांटिक महासागर हैं।
- 3. A, NO₃ है; Q एवं P क्रमश: प्रशांत एवं अटलांटिक महासागर हैं।
- 4. A घुला ऑक्सिजन है; Q एवं P क्रमश: प्रशांत एवं अटलांटिक महासागर हैं।

A1: 1 1 A2: 2 2 A3: 3 A4: 4

Objective Question

145 702145

The iron hypothesis was proposed

- based, in part, on evidence that Fe stimulated phytoplankton grew in lab experiments, especially of large diatoms.
- to state that the trace metal Fe was a limiting nutrient in the coastal oceans.
- 3. based, in part, on evidence that pCO₂ in a Fe fertilized patch of ocean in the Equatorial Pacific, decreased rapidly.
- 4. based, in part, on evidence that [NO₃-] increased by a factor of two in the Fe-fertilized patch of ocean in the Equatorial Pacific.

लौह अवधारणा का प्रस्ताव

- प्रयोगशाला के प्रयोग में Fe से उत्तेजित पादप प्लवक, मुख्यतया बड़े डायटम् की वृद्धि होने के प्रमाण पर अंशतः आधारित है।
- 2. यह बताने के लिए किया गया कि तटीय सागरों के लिए अल्प मात्रा (ट्रेस) धातु Fe एक सीमांत पोषक तत्व था।
- 3. विषुवतीय प्रशांत महासागर के एक Fe उर्वरित क्षेत्र में pCO₂ तेजी से गिर जाने के आधार पर अंशत: आधारित है।
- विषुवतीय प्रशांत महासागर के एक Fe-उर्वरित क्षेत्र में [NO₃-] दोगुना बढ़ जाने के आधार पर अंशत: आधारित है।

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

146 702146

Which of the following options is correct regarding nutrient-type elements in the ocean?

- they are particle reactive, and thus have a short residence time in the ocean.
- they include trace metals Cd and Zn.
- they typically have lower concentrations in the deep Pacific Ocean compared to the deep Atlantic.
- 4. they are controlled primarily by salinity variations in the ocean.

सागर में पोषक प्रकार तत्वों के बारे में इनमें से कौन विकल्प सही है?

- ये कण क्रियाशील होते हैं, इसलिए उनका सागर में बहुत छोटा निवास काल होता है।
- 2. इनमें Cd तथा Zn अल्प मात्रा धात् भी शामिल होते हैं।
- 3. गभीर अटलांटिक की तुलना में गभीर प्रशांत महासागर में आमतौर पर इनकी कम सांद्रता होती है।
- 4. सागर में ये प्राथमिक तौर पर लवणता परिवर्तन द्वारा नियंत्रित होते हैं।

A1: 1

1

A2: 2

2

A3: 3

3

147 702147

If the primary productivity off the Kerala coast during the upwelling becomes 400 g C m⁻² yr⁻¹ and Indian Oil Sardines are the major fish feeding on plankton, what would be the expected annual maximum yield of Oil Sardine in g C m⁻² yr⁻¹, considering the average ecological efficiency of 10%?

- 1. 80 g C m-2 yr-1
- 2. 40 g C m-2 yr-1
- 3. 8 g C m-2 yr-1
- 4. 4 g C m⁻² yr⁻¹

यदि उत्सवण के दौरान केरल तट पर प्राथमिक उत्तपादकता 400 g C m-2 yr-1 है तथा पादप प्लवकों को आहार करने वाले इंडियन ऑयल सारडीन मत्स्य प्रमुख हैं। औसत परिस्थितिक क्षमता 10% मानते हुए ऑयल सारडीन का g C m-2 yr-1 में अनुमानित वार्षिक उच्चतम उत्तपाद क्या होगा?

- 1. 80 g C m⁻² yr⁻¹
- 2. 40 g C m⁻² yr⁻¹
- 3. 8 g C m⁻² yr⁻¹
- 4. 4 g C m⁻² yr⁻¹

A1: 1

1

A2: 2

2

A3: 3

3

A4: 4

Objective Question

148 702148

Consider the following sequence of genus/species

Kandelia candel, Symbiodinium, Eucalanus elongatus, Synechococcus

What is the correct sequence of biota from the following options that corresponds to the above order?

- Mangrove, Dinoflagellate, Copepod, Cyanobacteria
- 2. Cyanobacteria, Copepod, Mangrove, Dinoflagellate
- Dinoflagellate, Copepod, Mangrove, Cyanobacteria
- 4. Mangrove, Dinoflagellate, Cyanobacteria, Copepod

निम्न जिनस/स्पेशीज़ के अनुक्रम पर विचार करें। कैंडेलिया कैंडेल, सिम्बायोडायनीयम, इयुकैलेनस इलोन्गेटस, सिनैकोकॉकस् इनमें से कौन जैव समूहों का अनुक्रमण ऊपर दिये अनुक्रमण के तदन्रूप है?

- 1. मैंग्रोव, डायनोफ्लैजिलैट, कोपेपोड, सायनोबैक्टेरिया
- 2. सायनोबैक्टेरिया, कोपेपोड, मैंग्रोव, डायनोफ्लैजिलैट
- डायनोफ्लैजिलैट, कोपेपोड, मैंग्रोव, सायनोबैक्टेरिया
- 4. मैंग्रोव, डायनोफ्लैजिलैट, सायनोबैक्टेरिया, कोपेपोड

A1: 1

1

A2: 2

2

A3: 3

A4: 4

_

Objective Question

149 702149

The nutrient-rich coastal regions with high primary productivity are usually dominated by which of the following phytoplankton groups?

- 1. Heterotrophic dinoflagellate
- Prokaryotic nitrogen fixers
- Silicoflagellates
- Silicious diatoms

उच्च प्राथमिक उत्पादकता के साथ पोशक-पर्याप्त तट क्षेत्रों में सामान्यतया इनमें से किस पादप प्लवक समूह का वर्चस्व होता है?

- 1. विषमपोशी डायनोफ्लैजिलैट
- 2. प्राक्केंद्रकी (प्रोकैरीयाटिक) नाइट्रोजन यौगिककारी
- 3. सिलिकोफ्लैजिलैट
- 4. सिलिकामय डायटम

A1: 1

A2: 2

4

A3: 3

3

A4: 4

4

Objective Question

At a location in Australia, stromatolite length was 1.3 m, and considering there was no change in sea level and erosion, what would be its expected age?

- 1. 1300 yrs
- 2. 3900 yrs
- 3. 5200 yrs
- 4. 2600 yrs

ऑस्ट्रेलिया के एक स्थान पर स्ट्रोमाटोलाइट की लंबाई 1.3 m थी, एवं यह मान लें कि समुद्रतल एवं अपरदन में कोई बदलाव नहीं हुआ उसकी संभावित उम्र क्या होगी?

- 1. 1300 yrs
- 2. 3900 yrs
- 3. 5200 yrs
- 4. 2600 yrs

A1: 1

1

A2: 2

A3: 3

3

A4: 4

4